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Abstract

Background: Genetic parasites are ubiquitous satellites of cellular life forms most of which host a variety of mobile
genetic elements including transposons, plasmids and viruses. Theoretical considerations and computer simulations
suggest that emergence of genetic parasites is intrinsic to evolving replicator systems.

Results: Using methods of bifurcation analysis, we investigated the stability of simple models of replicator-parasite
coevolution in a well-mixed environment. We first analyze what appears to be the simplest imaginable system of this
type, one in which the parasite evolves during the replication of the host genome through a minimal mutation that
renders the genome of the emerging parasite incapable of producing the replicase but able to recognize and recruit it
for its own replication. This model has only trivial or “semi-trivial”, parasite-free equilibria: an inefficient parasite is
outcompeted by the host and dies off, whereas an efficient one pushes the host out of existence, leading to the
collapse of the entire system. We show that stable host-parasite coevolution (a non-trivial equilibrium) is possible in a
modified model where the parasite is qualitatively distinct from the host replicator in that the replication of the
parasite depends solely on the availability of the host but not on the carrying capacity of the environment.

Conclusions: We analytically determine the conditions for stable coevolution of genetic parasites and their hosts
coevolution in simple mathematical models. It is shown that the evolutionary dynamics of a parasite that initially
evolves from the host through the loss of the ability to replicate autonomously must substantially differ from that of
the host, for a stable host-parasite coevolution regime to be established.
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to the Reviewers' Reports section.

Background
Genetic parasites are ubiquitous among cellular organisms
[1]. In fact, most organisms host a variety of mobile gen-
etic elements (MGE) that differ in their reproduction strat-
egies and the mode of parasite-host interaction, including
transposons, plasmids and viruses [2]. The abundance of
the MGE in the biosphere is enormous. Viruses are by far
the most common biological entities on earth [3–6], genes
of MGE, such as those encoding transposases, are among
the most abundant ones in diverse environments [7–9],

and the genomes of many multicellular organisms consist
of up to 50% integrated MGE, in the case of mammals, or
even up to 90% in the case of plants [10, 11].
The entire history of life can be properly depicted only as

the perennial coevolution of cellular organisms with genetic
parasites that includes both the proverbial arms race and
various forms of cooperation [1, 12, 13]. Moreover, multiple
lines of evidence point to a major role of genetic parasites
in the evolution of biological complexity, in general, and in
major transitions in evolution, in particular [14, 15].
The ubiquity and the enormous abundance of the MGE

in the biosphere imply that genetic parasitism is an intrin-
sic feature of life. Indeed, parasites invariably emerge in
computer simulations of the evolution of simple replicator
systems which, in well-mixed models, typically leads to
the collapse of the entire system [16–20]. This outcome
can be avoided by incorporating compartmentalization
into the model [18–20]. Further, mathematical models of
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the evolution of genomes with integrated MGE, combined
with probabilistic reconstruction of the evolution of bac-
terial and archaeal genomes, suggest that horizontal gene
transfer at rates that are required to stave off the muta-
tional meltdown of microbial populations (Muller’s
ratchet) prevents elimination of genetic parasites [21].
Cellular organisms and genetic parasites have been

considered the two “empires” of life that fundamentally
differ with regard to the capability of autonomous
reproduction [22, 23]. The MGE fully depend on the
host for energy production and the biosynthetic pro-
cesses, in particular, translation (notwithstanding the fact
that many large viruses encode components of the re-
spective functional systems that modify and modulate
the respective host functions [24, 25]).
In our previous theoretical analysis of the evolution of

genetic parasites in simple replicator systems [26] which
was, to a large extent, inspired by the seminal early experi-
ments of Spiegelman and colleagues on reductive evolu-
tion of bacteriophages genomes in vitro [27–30], we
present a semi-formal argument that the parasite-free
state of a replicator is inherently evolutionarily unstable.
Here, we explore these and derivative models analytically
and show that, in order for a replicator and a parasite to
stably coevolve, the parasite must substantially differ from
the host in its reproduction strategy.

Results and discussion
Genetic parasite as a degraded variant of the replicator
A simple conceptual model of the emergence of a gen-
etic parasite from within a self-replicating system [26]
implies (initially infinitesimal) degradation of the
replicase-encoding signal while the replicase-recognition
signal is retained. The dynamics of such a system is de-
scribed by the following pair of ordinary differential
equations [26]:

dR
dt

¼ 1
1þ αeð ÞR

2 1−
Rþ P

q
K

0
BB@
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CCA−eRR ð1Þ

dP
dt

¼ q
1þ eð ÞRP 1−
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q

K

0
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1
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(see Table 1 for the model parameters). The model is
based on the following assumptions:

� The kinetics of replication depends on the
interaction of the replicase and the template (either
the host replicator or a parasite), so that the
replication rate is proportional to the product of the
respective population sizes (R2 for the replicator and

RP for a parasite that lacks independent replication
ability)

� The decay rates are constant (er and eP) for
replicator and parasite respectively

� The parasite template replicates faster than that of
the replicator by the factor q ≥ 1, which, as the first
approximation, could interpreted as the “economy”
factor (the simplest interpretation is parasite being q
times smaller than the replicator, so it’s replication is
faster by the factor of q)

� Both populations are environmentally limited by the
same resources; the parasites consume q times less
resources per individual compared to the host
replicator; the environment carrying capacity K
determines the point where replication becomes
resource-limited

� The replicators possess a (costly) defense
mechanism with efficiency e ≥ 0 that is capable to
suppress the parasite replication by a factor of 1 + e
at the cost to the replicators replication rate of 1
+ αe (where α ≥ 0 is the defense mechanism cost
factor)

As noticed previously [26], this system has equilibria

(R ¼ ðK � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4eRÞ

p
=2 , P = 0) as e = 0. The point R

¼ ðK−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4eRÞ

p
=2, P = 0) is always unstable, that is,

introduction of the parasite into a replicator system
without any defense near this equilibrium leads to
eventual collapse of the entire system. The same hap-

pens at the equilibria R ¼ ðK þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4eRÞ

p
=2, P = 0) if

q > ep/eR. If q < ep/eR, then this equilibrium is stable,
and introduction of the parasite into the system leads
to runaway parasite proliferation.
Here, we aim to identify all stationary states of model

(1) and to analyze their stability, to study the qualitative
behavior of this model and to suggest some modifica-
tions that make possible the stable host-parasite
co-evolution.
All possible equilibria of the model can be found from

the system of equations dP
dt ¼ 0; dRdt ¼ 0. These equations

determine the following pair of (non-zero) isoclines (see
Additional file 1: Mathematical Appendix 1 for details):

Table 1 Parameters of the replicator-parasite dynamics model

Name Description

eR Replicator intrinsic decay rate

eP Parasite intrinsic decay rate

e Defense system efficiency

α Cost of defense system

q Parasite advantage factor

K Carrying capacity of the environment
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P1 Rð Þ ¼ q R K−Rð Þ−eRK 1þ αeð Þð Þ
R

ð2Þ

P2 Rð Þ ¼ q R K−Rð Þ−ePK 1þ eð Þ
R

the intersection of which (P1(R) = P2(R) at R > 0, P > 0)
indicates a non-trivial equilibrium. It should be im-
mediately apparent, however, that both equations have
the same form and differ only by the values of the
coefficients q(1 + αe)eR and (1 + e)eP, respectively (see
Fig. 1, left panel, for the characteristic shapes of these
isoclines when q(1 + αe)eR ≠ (1 + e)eP). Therefore, the
curves do not intersect in any point (R > 0, P > 0); the
only case where such equilibria exist is q ¼ ð1þeÞeP

ð1þαeÞeR ;
in this case P1(R) = P2(R) over the whole range of R
and the system has a line of non-isolated equilibria
(see Fig. 1, right panel).
More formally, model (1) always has the trivial equilib-

rium O(R = 0, P = 0) (both populations collapse). In
addition to that, the model might have up to two
parasite-free, “semi-trivial” equilibria

O1 R ¼ K−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4 1þ 1þ αeð ÞeRð Þp

2
; P ¼ 0

 !
ð3Þ

O2 R ¼ K þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4 1þ 1þ αeð ÞeRð Þp

2
; P ¼ 0

 !

the existence of which depends on the value of the fol-
lowing expression:

E ¼ K−4 1þ 1þ αeð ÞeRð Þ ð4Þ
If E > 0, both O1 and O2 exist; if E = 0, O1 =O2 =

O12(R = K/2, P = 0); if E < 0, the model has only the triv-
ial equilibrium O.
Stability analysis shows that the trivial equilibrium O

is a stable node at all values of the model parameters.

When both O1 and O2 exist (E > 0), if q < ð1þeÞeP
ð1þαeÞeR, O1 is a

saddle and O2 is a stable node and if q > ð1þeÞeP
ð1þαeÞeR , O1 is

an unstable node and O2 is a saddle. If K = 4(1 + e)/q, the

only semi-trivial equilibrium O12 is a saddle-node fixed
point (Fig. 2b; see Additional file 1: Mathematical
Appendix 1 for details). Let us consider q and e as
parameters of model (1) whereas K, α, eR, eP are ar-
bitrary values of fixed coefficients. The parametric
portrait of the system can be divided into 3 do-
mains, D1, D2 and D3 with qualitatively different
behaviors of the model (Fig. 2a); these domains are
defined by Theorem 1 (Fig. 3 and Additional file 1:
Mathematical Appendix 1). Asymptotically, as t→∞,
there exist two qualitatively different types of behav-
ior of the system, namely:

1. If the parameters q, e belong to the domains D1 or
D3 then, for any initial values (R, P), the system
collapses (R→ 0, P→ 0);

2. If the parameters q, e belong to the domain D2,
then, there exist domains of initial values in which
the system tends to the parasite-free equilibrium O2

whereas, at other initial values, it tends to the trivial
equilibrium O (collapse).

Therefore, the original model [26] has no non-trivial
(R > 0, P > 0) equilibria whereby the replicator and the
parasite could coexist and coevolve. A stable

parasite-free equilibrium can exist only if q < ð1þeÞeP
ð1þαeÞeR

and necessarily exists if, additionally, ae < (K − 4eR)/
(4eR)), that is, if the reproductive advantage of the
parasite is low and the replicator possesses defense
mechanisms that are efficient enough and not too
costly to overcome the intrinsic advantage of the
parasite.
The implications of these findings are the following:

emergence of a genetic parasite as a (slightly) degraded
copy (e.g. a variant of an RNA genome that contains a
deletion and thus cannot produce an active replicase) of
the “naïve” (defenseless) replicator (i.e. when eqs. (1)
apply and e = 0) leads to the collapse of the system to-
wards the trivial equilibrium (R = 0, P = 0). If the replica-
tor already has a sufficiently advanced and not

Fig. 1 Non-trivial null-clines P1(R), P2(R)for model (1). See eq.(2). Left panel: for q(1 + αe)eR≠ (1 + e)eP), the isoclines P1(R), P2(R) do not intersect for
positive P, R. Right panel: P1(R)≡ P2(R) for q(1 + αe)eR = (1 + e)eP), so system (1) has a line of non-isolated equilibria
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excessively costly defense mechanism (or is able to
evolve it before the population collapse), the system
could be stable in the parasite-free state as long as
the defense mechanism persists. If the defense de-
grades over time, which is likely to be the case be-
cause most if not all defense mechanisms incur a
non-zero fitness cost [31–34], the system will be-
come vulnerable again. Therefore, such a system is
inherently unstable. If the early history of (pre-)life
included a primitive replicator stage, as the RNA
World concept implies [17, 35, 36], it would be vul-
nerable to parasite-driven collapse, could not have
persisted for a long time and necessarily would
evolve into a different mode of replicator-parasite
relationships that is not subject to the limitations
imposed by eq. (1).

Genetic parasite with an additional interaction with the
replicator
Let us consider the model that differs from the model
(1) by an additional effect of the replicator-parasite inter-
action on the replicator dynamics:

dR
dt

¼ 1
1þ αeð ÞR

2 1−
Rþ P

q
K

0
BB@

1
CCA−bRP−eRR ð5Þ

dP
dt

¼ q
1þ eð ÞRP 1−

Rþ P
q

K

0
BB@

1
CCA−ePP

Such an effect could be interpreted as an extra penalty
on the replication rate:

Fig. 2 Characteristics of model (1). a Parameter-phase portrait. D1, D2 and D3 are the domains with qualitatively different model behaviors. The

boundaries are: Q:q ¼ ð1þeÞeP
ð1þαeÞeR (blue), B:e ¼ K−4eR

4αeR
(red). b Examples of phase portraits of model (1) with a stable trivial equilibrium O (all domains);

stable semi-trivial equilibrium O2 and unstable semi-trivial equilibrium O1 (domain D2); unstable semi-trivial equilibria O1, O2 (domain D3)

Fig. 3 Phase portraits of the model (1) on the boundaries B (left panel) and Q (right panel) of the phase- parametric portrait
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and/or as extra replicator degradation rate:

eR þ bP½ �R
due to the replicator-parasite interaction.
The trivial equilibrium O (R= 0, P= 0), and the

semi-trivial equilibria O1 and O2 (R > 0, P= 0), identified for
the model (1) still exist in the system (5) under the same
conditions. In addition, however, two new equilibria also can
exist in the system, namely, A1(R

+, P∗) and A2(R
−, P∗) where

Rþ;− ¼

q 1þ αeð ÞeR− 1þ eð ÞeP þ bKq2 1þ αeð Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ eð ÞeP− 1þ αeð Þq eR þ bKqð Þð Þ2−4 1þ eð Þb2 1þ αeð Þ2ePKq3

q
2b 1þ αeð Þq2

P� ¼ 1þ eð ÞeP−q 1þ αeð ÞeR
bq 1þ αeð Þ

These equilibria are positive (i.e. imply P > 0) only if

q < ð1þeÞeP
ð1þαeÞeR ; if q ¼ ð1þeÞeP

ð1þαeÞeR , the equilibrium points A1

and A2 merge with the points O1 and O2 of eq. (3)

and become negative if q > ð1þeÞeP
ð1þαeÞeR :

Stability analysis, however, shows that, when these
equilibria belong to the first quadrant, both are unstable:
A1 is an unstable node and A2 is a saddle (Fig. 4a, b; see

Additional file 2: Mathematical Appendix 2 for details).
Therefore, although the inclusion of this extra inter-
action, corresponding to a more aggressive parasite com-
pared to model (1), into the model does lead to
non-trivial equilibria (i.e. replicator-parasite coexistence),
they are unlikely to persist for on the evolutionarily rele-
vant time scale.

A highly derived genetic parasite
Analysis of the model (1) shows that the equilibrium be-
tween the parasite and the replicator is unstable and
largely hinges on the relative growth advantage of the
parasite q and the efficiency of the host replicator’s

defense mechanisms ð1þeÞ
ð1þαeÞ. A parasite that has a greater

advantage over the host replicator than the defense
mechanisms can handle overwhelms the system and
drives it to collapse, whereas a less efficient parasite is
eliminated by the host. Simply shrinking the parasite
genome and hence increasing its replicative advantage
(q≫ 1), while concomitantly reducing the impact on the

replicator dynamics according to the expression 1−
RþP

q

K ,
does not represent a viable path for the parasite towards
the stable coexistence because the increase in the para-
site replication efficiency overwhelms the attenuation of
its deleterious effect. Moreover, as the analysis of the
model (5) indicates, another intuitively plausible path to
coexistence, through additional suppression of the repli-
cator (allowing the parasite to escape elimination in the

Fig. 4 Characteristics of model (5). a Null - isoclines and equilibria. Left panel: positive non-trivial equilibria A1, A2 as q = 4; right panel: no positive
non-trivial equilibria as q = 10. b Phase portraits. Left panel: phase portrait of model (5) as b > 0 with unstable non-trivial equilibria A1 and A2.
Right panel: phase portrait of model (5) as b = 0 is similar to the phase portrait of model (1), no non-trivial equilibria
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presence of the efficient defense mechanism, for ex-
ample, by evolving antidefense mechanisms) does not
work either. Although non-trivial equilibria can exist in
this model, they are unstable.
More generally, the equilibria appear in the system as

intersections of the isoclines (see eq. (2)). Thus, to ensure
stable coexistence of the host and the parasite, the equa-
tions of the replicator and parasite dynamics should sub-
stantially differ from each other unlike those in model (1)
(see Additional file 1: Mathematical Appendix 1). From
the biological perspective, this means that the parasite
cannot be, simply, a slightly modified variant of the repli-
cator. Rather, the effects of the replicator and the parasite
on each other’s replication should be substantially asym-
metric and/or their interactions with the environment
should be substantially different. One such possible modi-
fication is represented in the following model:

dR
dt

¼ 1
1þ αeð ÞR

2 1−
Rþ P

q
K

0
BB@

1
CCA−eRR ð6Þ

dP
dt

¼ q
1þ eð ÞRP−ePP

In the model (6), the parasite dynamics does not depend
on the carrying capacity of the environment, whereas the
consumption of the resources by the parasite continues to

be a factor in the replicator dynamics (1−
RþP

q

K ). A biological
model for this behavior is a highly specialized parasite that
obtains the necessary resources from the host (effectively,
for free) rather than directly from the environment. If the
parasite is individually small enough compared to the host,
as is the case for many viruses and transposons, at least
those that parasitize on eukaryotes, its growth is not lim-
ited by the external environmental resources. The mere
availability of the host ensures that the resources are suffi-
ciently abundant and is the only limiting factor for the
parasite reproduction.
Analysis of the model equilibria (see Additional file 3:

Matematical Appendix 3 for details) defines the follow-
ing family of null isoclines for P and R:

P1 ¼ 0

P2 Rð Þ ¼ q R K−Rð Þ−ePK 1þ eð Þ
R

ð7Þ
R1 ¼ 0

R2 ¼ 1þ eð ÞeP
q

(Fig. 5). The trivial equilibrium O (R = 0, P = 0), and
the semi-trivial equilibria O1 and O2 (R > 0, P = 0), found
in model (1) and defined by eq. (3), also exist in model

(6) subject to the conditions defined by eq. (4). In
addition, an equilibrium

AðRA ¼ ð1þeÞeP
q ;PA ¼ Kqð1þeÞeP−ð1þeÞ2eP2−ð1þαeÞeRKq2

ð1þeÞeP Þ (8)

also exists. Under the condition q ¼
ð1þeÞePðK�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK−4ð1þαeÞeRÞ

p
Þ

2ð1þαeÞeRK , the equilibrium A is semi-trivial

(R > 0, P = 0) and coincides with either O1 or O2. For the
values of q defined by

1þ eð ÞeP K−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K K−4 1þ αeð ÞeRð Þp� �

2 1þ αeð ÞeRK < q

<
1þ eð ÞeP K þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K K−4 1þ αeð ÞeRð Þp� �
2 1þ αeð ÞeRK

the equilibrium A is non-trivial (R > 0, P > 0).
Analysis of the model (6) (see Additional file 3:

Mathematical Appendix 3 for details) allows us to
construct the parameter-phase portrait of the model
(Fig. 6a, b). Let us consider q and e as parameters of
the model (6) whereas K, α, eR, eP are arbitrary
values of fixed coefficients. The portrait contains do-
mains D1, D2 and D3 similar to those in model (1)
(Fig. 2), and 3 additional domains, D4, D5 and D6.
The boundaries between the parametric domains of

model (6) are determined by the curves B,Q1,Q2,Tr,L,
described in Additional file 3: Mathematical Appendix 3.
The domains have the following properties:

D1 (e > B): only the trivial equilibrium O exists and
is stable (in D1, the effective cost of the defense
mechanisms αe is so high that the replicator
population collapses even in the absence of the
parasite);
D2 (e < B, q <Q1): the trivial equilibrium O is
stable; the semi-trivial equilibrium O1 is unstable;
the semi-trivial equilibrium O2 is stable; no other
equilibria exist (in D2, the efficiency of the defense
mechanisms is sufficient to eliminate the parasite as
long as the population of the replicator itself is
sustainable);
D3 (e < B, q >Q2): the trivial equilibrium O is stable;
both semi-trivial equilibria O1 and O2 are unstable; no
other equilibria exist (in D3, the parasite overwhelms
the defense mechanisms of the replicator and thus
collapses the system);
D4 (e < B, Q1 < q < Tr): the trivial equilibrium O is
stable; both semi-trivial equilibria O1 and O2 are un-
stable; the non-trivial equilibrium A is a stable node or
focus (in D4, the parasite and the replicator can coexist
at a stable equilibrium, Fig. 6b);
D5 (e < B, Tr < q < min(L,Q2)): the trivial
equilibrium O is stable; both semi-trivial equilibria
O1 and O2 are unstable; the non-trivial equilibrium
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A is unstable but is surrounded by a stable limit
cycle (in D5, the parasite and the replicator can co-
exist in a stable oscillation regime);
D6 (e < B, L < q <Q2): the trivial equilibrium O is
stable; both semi-trivial equilibria O1 and O2 and the
non-trivial equilibrium A are unstable (in D6, the
defense mechanisms of the replicator are not sufficient
to keep the parasite in check; although other equilibria

exist, they are unstable, so that the system would col-
lapse upon a perturbation).

Overall, the system collapses in domains D1, D3,
and D6; the replicators and parasites can coexist in do-
mains D4 and D5; and, the system is bistable in domains
D2, D4 and D5, that is, its final behavior critically de-
pends on the initial values of P and R.

Fig. 5 Null isoclines (eq. (7) for model (6)

Fig. 6 Characteristics of model (6). a Phase-parametric portrait of model (6). D1 −D6 are the domains with qualitatively different model
behaviors. b Examples of phase portraits of model (6) with a stable non-trivial equilibrium A (domain D4) and stable oscillations (domain D5); no
non-trivial stable regimes in domain D6
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Thus, under the model (6), there exists an intermedi-
ate regime in which the parasite efficiency is roughly
balanced by the efficiency of the replicator defense
mechanisms under which the replicator and the parasite
can coexist indefinitely in a stable equilibrium or a limit
cycle. Unlike in the model (1) that lacks such a regime,
the parasite in the model (6) is a highly derived state. In
such a state, the parasite replication and survival directly
depend only on the host (replicator) availability but not
on the environment (the parasite equation in (6) lacks

the 1−
RþP

q

K term). Models with the parasite being closely
similar to the replicator in its interaction with the environ-
ment (that is, with the parasite replication equation closely
resembling that of the replicator), such as the model (1),
cannot support stable non-trivial equilibria (compare the
families of null isoclines in eqs. (2) and (7)). A variant of
the model (6) with an additional effect of the
replicator-parasite interaction on the replicator dynamics
shows qualitatively the same behavior as model (6) (see
Fig. 7 and Additional file 4: Mathematical Appendix 4).

Concluding remarks
We show here that, in order to produce stable equilibria,
models of the coevolution of genetic parasites and their
hosts cannot be too simple. The parasite must not be
too closely similar to the host in its reproduction strat-
egy. More specifically, stable coevolution becomes pos-
sible in models where only the reproduction of the host
but not that of the parasite depends on the carrying cap-
acity of the environment. From a biological perspective,
a successful parasite has to rely on the host not only for
replication but also for building blocks and energy. Per-
haps, these results go some way to explain why, to the
best of our current knowledge, no genetic parasites have
ever captured neither full-fledged biosynthetic pathways,
including the translation system, nor the molecular ma-
chinery for energy production.
Although the analyzed models are too simple to be of

much direct relevance to extant cases of host-parasite

coevolution, they are likely to be relevant for early stages
of (pre) life evolution, within the RNA World, the
leading current scenario for the origin of life [37–39],
and at the subsequent stages, when DNA and proteins
came to the scene, and different replication strategies
evolved. Importantly, the replicators in this model are
not abstract information carriers but self-sustaining
reproducers that extract energy and building blocks
from the environment, supporting both the host and
the parasite [17, 35]. Conversely, the parasites neither
encode their own replication machinery nor actively
utilize resources, that is, their dependence on the host
is complete.
The results of this work imply that primordial replica-

tors have made innumerable “false starts” whereby
host-parasite systems collapsed under the unchecked
parasite pressure. Only in more evolved systems, where
the capacity of the parasite to outcompete the host is
balanced by defense mechanisms and, conversely, the
ability of the host to eliminate the parasites is under-
mined by the cost of defense, stable coevolution became
possible. Such coevolution between hosts and parasites
is likely to be an essential driver of the evolution of bio-
logical complexity, and more specifically, of major tran-
sitions in evolution [15]. Hence any biological systems,
in which a stable host-parasite coevolution regime failed
to evolve, would be evolutionary dead ends.
We considered here only homogenous, well-mixed

host-parasite systems. In computer simulations, com-
partmentalization has been shown to lead to stable
co-evolutionary regimes. Most likely, compartmentaliza-
tion of replicator ensembles had been part and parcel of
the evolution of life from its earliest stages on, and could
be considered a form of host defense, perhaps, the sim-
plest one [18, 19]. Clearly, compartmentalization is a
major path to the emergence of diversity and complex-
ity. Further development of the models described here,
in particular, by explicitly allowing evolution of the pa-
rameters defining the behavior of the parasites and repli-
cators, will be of interest.

Fig. 7 Null isoclines for Volterra-type models. The isocline P(R) corresponds to the model (A3.1) which is the same as model (6); the isocline Pb(R)
corresponds to the model (A4.1) with b > 0
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Reviewers’ reports
Reviewer 1: Olivier Tenaillon
In their manuscript “the Stability of host parasite sys-
tems: you must differ to coevolve” Faina Berezovskaya
and coauthors study the existence of non trivial equi-
librium in a host parasite system. The model they are
interested in is the emergence of virus, transposons
or mobile genetic elements. Using the existing sets of
equation, the model does not allow for coexistence
but rather suggests only non-invasion or the systems
collapse due to parasite. TO find a range of condi-
tions in which host and parasite can coexist they
show that allowing the parasite to fully capture the
energy from its host is important. This suggest that
parasite must from the start be very different from
their host. The problem is nicely stated and import-
ant for the current understanding of genomes that
are full of mobile genetic elements. I have just some
minor comments concerning how the equations could
be reduced at least in the end to clearly identify the
relevant biological parameters.
First, in the set of equation used K is not the capacity

at equilibrium, would it be possible to have a true carry-
ing capacity term in the equation for R and add modifi-
cation in the P equation.
Response: The terms for the environment interactions for

the host and the parasite were deliberately entangled in
the original formulation of the model (eq. (1), ref [26]). In
this model, the host and the parasite compete for the same
resources (albeit consume different amounts per individ-

ual, see more on this below). That is where the RþP=q
K term

comes from. The carrying capacity K, indeed, is not equal
to the total population size at equilibrium. It defines the
neutral point for the resource-limited replication rate ra-
ther than for the overall population growth rate. We find
this usage to be quite in the spirit of the original logistic
model; the alternative (defining K through the total popu-
lation size at equilibrium) would entangle it with the decay
term and make the equations more cumbersome. We have
added the explanation to this effect to the main text.
The impact of the q term in the logistic is not clear to

me. It should be explained why q increases the speed of
the parasite and decreases its contribution in the logistic.
Though is makes sense qualitatively, could decoupling q
in two terms solve some of the problem? Here one of
the issue is that a small impact on the host resources, re-
sults in an infinite growth rate. There could be a de-
coupling of the two with a replication rate limit for
instance, a simple saturating function could work.

Response: The simplest way to think of the term q is to
envisage a primitive system where both the replicator
and the parasite are, essentially, single molecules as in the
RNA world scenario. The replicator molecule encodes the

complete, active replicase, whereas the parasite molecule
only carries the replication recognition signals and is
shorter by a factor of q. Replication of such a parasite mol-
ecule requires q times less resources and would occur q
times faster, compared to the replicator molecule. We have
added the explanation to this effect to the main text.
In the final set of equation analysed (eqs. 6), here again

it would be interesting to narrow down the system to its
simplest form, to be able to see how general these equa-
tions are and how important are the terms linked to re-
sistance and cost. For instance, the Parasite equation
results in a pure predator equation. But the impact on
the host/prey is different, mostly due to the R^2 in the
replicator eq. I think discussing the similarity and redu-
cing the final numbers of parameters could be useful for
readers and for the discussion.
Response: The R2term in the replicator equation and the

RP term in the parasite equation both come from a simple
mechanistic consideration: the entity (either the host repli-
cator or a parasite) must encounter a replicase in order to
be replicated. This is what makes this system distinct from
the classic predator-prey model where the prey population
growth follows the first-order kinetics (i.e. is not limited by
the rate of intra-species encounters). We consider this fea-
ture to be an important distinction. We have added the ex-
planation to this effect to the main text.
A lot is spent about discussing the resistance to the

parasite, but the final equation could just assume differ-
ent growth rates. For the discussion, in the debate on
parasite emergence, here a choice is clearly made in the
equations: the parasite has to be fully dependent on its
hots from the start. What if as observed in some viral
system [40] there is only an initial partial dependency.
This could lead to an unstable system with a prisoner’s
dilemma outcome. But with a group selection pattern,
the gradual emergence of parasites that can coexist with
their host could emerge. For the present manuscript I
just think that it could be mentioned that the present
systems envision the immediate appearance of a fully
dependent parasite, but that more gradual outcomes
could be possible. Overall it is an interesting story.
Response: We added the clarification that the model

presumes a complete dependence of the parasite on the
replicator in the model description and also in the
Concluding Remarks.

Reviewer 2: Sandor Pongor
This is an original and significant contribution. As
pointed out to the authors, I find the language difficult
at times, though the writing of the paper is in general
excellent and easy to follow.
Genetic parasites including mobile genetic elements,

viruses and plasmids are ubiquitous among cellular
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organisms, and are by far the most abundant form of
life. The emergence of genetic parasites is intrinsic to
evolving replicator systems, but the stability of
host-genetic parasite coevolution are not well under-
stood. Berezovskaya and associates tackle this very com-
plex problem using the method of bifurcation analysis.
They convincingly show that the logically simplest
model is unstable however stability can be achieved via
slight modification of this model. The logics of the pres-
entation is straightforward and easy to follow.
This reviewer finds the language too complicated at

times, for instance the key sentence of the abstract “It is
shown that the simplest imaginable system of this type …”
appears far too complex for and abstract, and the subtitle
“A highly derived genetic parasite” is hard to follow.
Response: We appreciate the review and regret that

some of the original language appeared difficult in places.
We streamlined the complicated sentence in the Abstract
and went through the entire manuscript to split some long
sentences which, hopefully, makes the text more digestible.
We presume that “subtitle” here implies the text of the re-
spective section (the subtitle itself is very brief and straight-
forward). We made a few edits in this section but, overall,
fail to see any source of potential confusion.

Reviewer 3: Alex Best
The authors present a series of models to represent dy-
namics between a host replicator and a genetic parasite.
They show that their initial models yield no stable coex-
istence equilibria, but that if the parasite derives its re-
sources purely from the host, and not the environment,
then stable or cycling coexistence can occur. My back-
ground is in host-parasite coevolution in the more ‘clas-
sic’ setting of microparasites, using S-I type
epidemiological models (after Kermack & McKendrick
and Anderson & May). I was therefore very interested
by the idea of looking at the case of genetic parasites
and MGEs. The methods applied look sound and the
manuscript was fairly easy to read. Overall, however, I
find myself a little confused. The set-up of the ‘sim-
plest imaginable’ model seems to me rather less an
obvious starting point than their final model. This
perhaps represents my background in the micropara-
site literature, but even so I think more could be
done to explain *why* this would be an obvious start-
ing point for a model.
The assumption of equal carrying capacities and why

replicator growth is proportional to R^2 is particularly
puzzling to me. I also found the figures to be of quite
low print-quality, and therefore not always very helpful.
Response: The carrying capacity in the original model

is determined by the joint resource consumption whereby
the replicator consumes 1 unit per individual and the
parasite 1/q units per individual. In our model, the host

replicator and the host consume the same resource and
hence share a common carrying capacity although the re-
source consumption rates differ by a factor of q. Such a
model would apply, for example, to a case when the rep-
licator and the parasite are both molecules of the same
type, such as RNA, The R2dynamics for the replicator
and the RP dynamics for the parasite reflects the second
order kinetics where the act of replication requires an en-
counter between a template and the replicase. We added
more detailed explanations to the model description.
Title - Could you perhaps use ‘genetic parasites’ in the

title? This is a fairly specific example of a ‘host-parasite
system’. Figures - The figure legends are far too brief,
and the plots themselves seem to be of low quality.
Response: Yes, fair point, we have modified the title ac-

cordingly and also emphasized genetic parasites in the
revised Conclusions section of the Abstract. Several figure
legends have been expanded, too.
P5 L33 - These equations do not seem to be the obvi-

ous first step, and I’m not sure how they were reached.
For example: * While it makes some sense for the para-
site growth rate to be proportional to the replicator
density, why is the replicator growth rate proportional to
R^2? This seems particularly important as it will be this
assumption that ensures the (0,0) equilibrium is always
stable and this complete extinction remains possible.
* Why would we expect the parasite to be subject to

the same carrying capacity, K, as the replicator?
Response: See the explanation above.
P5 L41 - Table 1 doesn’t seem to be here anywhere.
Response: we regret the omission, table added.
P5 L43 - What is ‘the template’? You haven’t defined

this previously.
Response: We use the word “template” to mean “any-

thing that could be replicated by the replicator”. In the
context of the model, it is either the replicator itself that
is replicated by a replicase (which, in a simplest model
of the RNA world, could be an identical molecule), or a
parasite (which is incapable of producing the replicase
but can serve as a template). In molecular biology,
“template” is a common term when replication (or tran-
scription) is described, so we do not expect any confu-
sion coming out of it.
P6 L10 - R = K is not an equilibrium of (1), as this

would give dR/dt = −e_rK. I assume that is why you use
the \approx symbol, but why not state the actual value.
Response: The statement is corrected to refer to the

equilibrium of a parasite-free system.
P6 L53 - Why do you call these ‘semi-trivial’?
Response: Because the value of one of the variables

(but not both) is 0. When introducing the semi-trivial
equilibrium, we indicate that it is parasite-free, so we do
not believe any confusion is likely.
P7 L31 - You have not defined these domains.
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Response: they are defined in the revised text, with ref-
erence to Additional file 1: Mathematical Appendix 1
and Fig. 2a.
P7 L58 - In what sense is the parasite a ‘slightly de-

graded copy’ of the replicator?
Response: we specify in the revision: “e.g. a variant of

an RNA genome that contains a deletion and thus can-
not produce an active replicase”.
P9 L18 - In Fig. 4, these new coexistence equilibria

seem to introduce an interesting bistability between
replicator-ply and complete extinction. Could you com-
ment on this?
Response: Positive non-trivial equilibria A1(left) and

A2 (right) (see Fig. 4) that appear when q < ð1þeÞeP
ð1þαeÞeR are

both unstable: A1 is an unstable node and A2 is a sad-
dle. Stable equilibria are only trivial (O) and semi-trivial
(O2) - see Fig. 2, Domain 2; new stable equilibria do not
appear. Unstable equilibria are not “observable” but can
change the areas of attraction of stable equilibria (in
particular, the area of attraction of the semi-trivial equi-
librium O2 increases) and make the system orbits more
complex.
P10 L17 - As I implied above, it is a little puzzling to me

why this wouldn’t be the first model you choose anyhow.
Response: We started from the model (1) in order to

show that, if the dynamics of genetic parasites is close to
that of the host, then, either the parasite or the entire sys-
tem goes extinct.
Why would you assume the replicator and parasite

have the same carrying capacity? This model is much
closer to ‘classic’ host-parasite models.
Response: it is not exactly the case that the carrying

capacities for the replicator and the parasite are the
same. Rather, K is the carrying capacity for the complete
host-parasite system from which they consume resources
at different rates (for more detail, see the response to
Olivier Tenaillon above).
P12 L10 - It is very interesting that you have found a

limit cycle here, which does not occur in classic models.
My guess is this is again to do with the R^2 in the growth
term, but it would be interesting if you could explain this.
Response: A limit cycle arises due to the term R^2 in

the equation for the replicator growth that differentiates
the proposed model from standard host – parasite
models. As a result, the relative growth rate (dR/dt)/R is
non-monotonic and has a maximum, so that the cycle
arises when the null-cline intersects this maximum. Simi-
lar models describe so-called Allee-effect [41]. In this type
of models, oscillations always arise for such parameter
values where a stable equilibrium loses stability and a
stable limit cycle appears around the equilibrium due to
the Hopf bifurcation. This limit cycle can disappear in a

heteroclinics composed by separatrixes of neighboring
saddles under variation of the system parameters, and
this is exactly what happened in our model (6). As a re-
sult, only unstable non-trivial equilibrium remains in the
phase plane. Then, with further changing of the parame-
ters, this equilibrium merges with the trivial equilibrium
and disappears.
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