
Polewko-Klim et al. Biology Direct  (2018) 13:17 
https://doi.org/10.1186/s13062-018-0222-9

RESEARCH Open Access

Integration of multiple types of genetic
markers for neuroblastoma may contribute to
improved prediction of the overall survival
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Abstract

Background: Modern experimental techniques deliver data sets containing profiles of tens of thousands of potential
molecular and genetic markers that can be used to improve medical diagnostics. Previous studies performed with
three different experimental methods for the same set of neuroblastoma patients create opportunity to examine
whether augmenting gene expression profiles with information on copy number variation can lead to improved
predictions of patients survival. We propose methodology based on comprehensive cross-validation protocol, that
includes feature selection within cross-validation loop and classification using machine learning. We also test
dependence of results on the feature selection process using four different feature selection methods.

Results: The models utilising features selected based on information entropy are slightly, but significantly, better
than those using features obtained with t-test. The synergy between data on genetic variation and gene expression is
possible, but not confirmed. A slight, but statistically significant, increase of the predictive power of machine learning
models has been observed for models built on combined data sets. It was found while using both out of bag estimate
and in cross-validation performed on a single set of variables. However, the improvement was smaller and non-significant
when models were built within full cross-validation procedure that included feature selection within cross-validation
loop. Good correlation between performance of the models in the internal and external cross-validation was
observed, confirming the robustness of the proposed protocol and results.

Conclusions: We have developed a protocol for building predictive machine learning models. The protocol can
provide robust estimates of the model performance on unseen data. It is particularly well-suited for small data sets.
We have applied this protocol to develop prognostic models for neuroblastoma, using data on copy number variation
and gene expression. We have shown that combining these two sources of information may increase the quality of
the models. Nevertheless, the increase is small and larger samples are required to reduce noise and bias arising due to
overfitting.
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Background
The current study is the answer to the CAMDA Neu-
roblastoma Data Integration Challenge (camda.info). The
goal of the challenge was the exploration of the opportu-
nities given by the availability of different types of molec-
ular data for improving prediction of patient survival in
neuroblastoma.
Neuroblastoma is a cancer manifesting in early child-

hood. It displays a heterogeneous clinical course and a
large fraction of patients with neuroblastoma will eventu-
ally enter metastasis and have a poor outcome. Accurate
identification of the high-risk group is critical for deliv-
ering an appropriate targeted therapy [1]. Currently, the
prognosis is based on clinical stage and age of the patient
[2]. However, research towards inclusion and integration
of genomic data with expression profiles and traditional
clinical data is actively pursued in the field [3]. In partic-
ular, the effort towards establishing a connection between
clinical outcome and gene expression has been recently
the subject of a multinational project involving multi-
ple bioinformatical and analytical laboratories [4], where
gene expression profiles of 498 patients were examined
using both microarrays and RNA sequencing. Within the
CAMDA Neuroblastoma Challenge this data has been
accompanied with previously generated data relating copy
number variation (CNV) for the subset of patients consist-
ing of 145 individuals [2, 5–7]. The clinical data was avail-
able for all patients, including survival time, classification
to the low- or high-risk subset, as well as sex.
Most of the data in the challenge was already used in

the study aiming at comparison of utility of RNA-seq and
microarray data sets for prediction of the clinical endpoint
for neuroblastoma.What is more, the goal of the CAMDA
challenge is a logical extension of goals pursued in that
study. Therefore, the current study is based on general
methodology proposed by Zhang et al.
However, the detailed analysis of the results obtained

in that study shows that significant modifications in the
methodology are required. In particular, the design of the
Zhang et al. did not allow for the robust and reproducible
estimate of predictive power of different models. The
study was performed using a single split of data between
training set, used to develop models, and validation set,
used for assessing the quality of predictions. Six inde-
pendent groups developed models using data from the
training set, the quality of which was then assessed on
the validation set. Sixty models using different approaches
and different sets of variables were built for each of the six
different clinical endpoints. The predictive power of each
model was also estimated using cross-validation on the
training set. The metric of choice was Matthews Correla-
tion Coefficient (MCC) [8] which is a balanced measure
of the predictive power of a binary classifier. In compar-
ison with the simple accuracy measure, it assigns greater

weight to prediction of minority class for unbalanced data
sets.
Unfortunately, the predictive power of models mea-

sured on the training set was not correlated with the
predictive power measured on the validation set. Only for
models predicting the sex of a patient, correlation between
the quality of the model measured on the training set and
that measured on the validation set was 0.41, which is sta-
tistically significant, if not very high. Nevertheless, this
endpoint is not clinically interesting and it was used in
the study merely as a reference representing a very easy
modelling target.
For all other clinical endpoints correlations between

MCC obtained in cross-validation and MCC obtained on
validation sets are very small, confined to a small inter-
val between -0.1 and 0.11. What is more, the variance
of MCC obtained both on training and validation sets
was very high. For example, the following results were
obtained for the overall survival: the mean MCC on the
training set and validation set for 60 models was 0.48
and 0.46, and 95% confidence interval is (0.46, 0.51) for
the former and (0.45, 0.49) for the latter. The high vari-
ance and lack of correlation between predictive power of
the models obtained on the training and the validation
sets precludes definitive statements about overall superi-
ority of one classifier over another, including comparison
of relative merits of different data sets used to build the
classifiers.
Since the main goal of the current study is to examine

whether integrating multiple lines of experimental evi-
dence can improve the quality of predictive models, high
confidence in robustness of results is crucial. For this pur-
pose, we propose a protocol that gives robust results that
are well correlated between training and validation sets.
The protocol is based on an extensive cross-validation and
utilises four methods for selecting informative features
used for model building. We apply this protocol to exam-
ine the relative utility of different data sets for predicting
a single clinical endpoint, namely the overall survival.
Finally, we apply the same protocol to examine whether
models that utilise informative variables from more than
one data set have a higher predictive power in compar-
ison with the models utilising information from a single
data set. The protocol includes a feature selection step.
Hence, it allows to explore differences and similarities
between genes selected as most informative from three
independent experimental methods.

Methods
The single split of data between training set and valida-
tion set is not sufficient for robust estimate of perfor-
mance of the machine learning model on external data.
Modelling procedure that includes variable selection and
model building is prone to overfitting in both steps. The
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variable selection finds variables that are informative due
to the true relationship with the decision variable, how-
ever, the strength of the relationships is modulated by
random fluctuations. Hence, variables that appear as most
relevant in the training set may be weaker in the valida-
tion set. Since the fluctuations in the validation set are
independent from the fluctuations in the training set, one
can expect that the predictive quality of the model should
be weaker on the validation set. The analysis of [4] shows
that this decrease is not uniform. On the contrary - the
decrease of the predictive power between training and val-
idation set is correlated with the latter. The models that
were overfitted the most pay the highest penalty.
The problem is unavoidable when only a single split

between the training set and the validation set is used for
evaluation of the model performance. The only solution
is to switch focus from the individual model to the entire
model building pipeline. In particular, this pipeline should
encompass the crucial step of selecting variables that will
be used by the classification algorithm to build a model. A
standardised and reproducible modelling strategy should
be used for numerous independent splits of data, and per-
formance of the strategy should bemeasured as an average
over sufficiently large number of tests.
To this end, we propose the following protocol:

1 identification of all informative variables in all data
sets generated with different experimental
techniques,

2 selection of a limited subset of the variables in each
data set,

3 optional merging of data sets from different
experiments,

4 building predictive models using machine learning
algorithms.

The verification of the predictive power of the pro-
tocol is performed with the help of a cross-validation
procedure. The model building step is performed using
entire available data and the verification of the robust-
ness is performed using two-tiered cross-validation. The
first step, namely identification of informative variables,
aims at two tasks: one is the removal of variables that are
non-informative from consideration, another is produc-
ing ranking of relevant variables. All data sets in the study
are very high-dimensional. Removal of irrelevant variables
transforms the problem to a more tractable one.
In all cases, with the exception of CNV data set, the

number of genes that carry information on the decision
variable is still much too large for modelling. Therefore,
a very simple selection of variables is applied, namely
selecting N variables with highest importance score, for
model building. This is a naive method, but reasoning is
that all non-redundant variables should be included when

sufficiently large number of variables is considered. The
maximal number of variables considered was set at 100
due to our previous experience with gene expression data
and preliminary experiments with the current data sets.
Both suggest that performance of the predictive models
either stabilises or even starts to decrease when number
of variables included in the model is larger than that.

Data
The data sets used in the current study were obtained
from the CAMDA 2017 Neuroblastoma Data Integra-
tion Challenge (http://camda.info). Genetic information
was collected using three different experimental tech-
niques, namely profiling of gene expression (GE) bymeans
of microarray, RNA sequencing, as well as analysis of
copy number variation profiles using array comparative
genomic hybridization. The data collection procedures
and design of experiments were described in the orig-
inal studies [2, 4–7]. The data is alternatively accessi-
ble in Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) with accession number GSE49711 (gene
expression) and GSE25771, GSE35951, GSE45480, and
GSE56109 (copy number variation). The following data
sets are available:

1 39 115 array comparative genomic hybridization
(aCGH) copy number variation profiles, denoted as
CNV,

2 43 349 GE profiles analysed with Agilent 44K
microarrays, denoted as MA,

3 60 778 RNA-seq GE profiles at gene level, denoted as
G,

4 263 544 RNA-seq GE profiles at transcript level,
denoted as T,

5 340 414 RNA-seq GE profiles at exon-junction level,
denoted as J.

Data for 498 patients is available in the MA, G, T and
J data sets, whereas the CNV data set is limited to 145
patients. Therefore, a full analysis is performed for 145
patients and a separate analysis is performed for 498
patients using four data sets. The data sets are further
referred to as X-number, where X corresponds to data
set, and number is either 498 or 145. For example, MA-
145 denotes MA data set limited to a cohort of 145
patients. Both cohorts are unbalanced. There are 393 sur-
vivors versus 105 non-survivors (21% of non-survivors,
79% survivors) in the larger cohort. The smaller cohort
is slightly less unbalanced with 107 survivors versus 38
non-survivors (26% of non-survivors, and 74% survivors).

Statistical properties of gene expression and CNV data
Data sets used in the current study correspond to two dif-
ferent biological phenomena, measured using 5 different
experimental techniques resulting in different statistical

http://camda.info
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Polewko-Klim et al. Biology Direct  (2018) 13:17 Page 4 of 22

properties of their distribution. Nevertheless, they can be
analysed using the same general protocol. In all cases we
look for the difference between samples taken from two
populations. In the case of gene expression we look for the
differentially expressed genes, whereas in the case of CNV
data sets we look for genes that have different number of
copies in two populations.
Gene expression was measured by RNA-seq as well

by microarray hybridisation, whereas CNV variation was
measured by two-channel microarrays. Despite different
biological phenomena under scrutiny, signal from both
microarray experiments has similar properties. In both
cases the signal is transformed to logarithmic scale. In
this scale the signal distribution is approximately normal
in most cases. The normality was tested using two tests,
Kolmogorov-Smirnov (KS) [9] and Shapiro-Wilk (SW)
[10], implemented in R. Both tests were performed sep-
arately for each decision class (survivors/non-survivors).
For the MA-145 data set, the less strict KS test accepted
hypothesis of normality in 88% of cases, while the more
strict SW test confirmed normality in 51% of cases (both
numbers are given for the more numerous class, slightly
higher values were obtained for the less numerous one). In
the case of CNV data set, the corresponding numbers are
96% for KS test and 48% for SW test.
The signal from gene expression measurement obtained

by means of RNA-seq has markedly different statistical
properties than one obtained from the microarray mea-
surements. In the case of microarrays, the physical signal
is an intensity of fluorescence from probes hybridised to
gene-specific sondes. In the case of RNA-seq, the raw sig-
nal is a number of reads that map to a gene. It is then
preprocessed in a RNA-seq specific pipeline and nor-
malised. The RNA-seq data available for CAMDA chal-
lenge was preprocessed by the Magic-AceView pipeline
(MAV), based on the Magic analysis tool [11] (https://
bit.ly/2K0jkwi), see Zhang et al. for details [4]. The final
expression signal is a logarithm of the signal normalised
to FPKM units. The gene expression signal measured by
RNA-seq is not close to normal distribution for most
genes. Only 9% of variables are normally distributed
according to the SW test and 38% pass the KS test.

Data preprocessing
All datasets were preprocessed before they were used
in analysis. In the first step the data sets were care-
fully inspected manually. It turned out that CNV data
in particular required manual curation. The CNV mea-
surements were performed in 7 laboratories, with two
different Affymetrix platforms. Each laboratory has used
slightly different file formats, with varying numbers of
rows and columns. In some cases the reference and test
samples were marked with different fluorescent markers.
The manual curation involved selection of a common

set of probes and mapping results to the single signal
direction. After initial manual inspection and curation,
the variables with more than 10% of missing values were
removed from the data sets. Then for each variable that
still contained missing values, they were replaced by the
median value. Finally, the effects of confounding values
were examined and removed with the help of SVA package
[12] from Bioconductor [13] (https://bit.ly/2yod7FC). The
MA-498, and RNA-seq data sets have been preprocessed
earlier in the original study, hence there was no need for
the additional preprocessing. In particular no batch effects
were discovered with SVA package. The scripts for data
preprocessing are available upon request.

Identification of informative variables
In the first step of the procedure, we aim to identify all
relevant variables [14, 15] with the help of three meth-
ods: t-test, simple univariate information gain, and two-
dimensional conditional information gain.

T-test In the first approach we perform a standard test
of difference of means for two populations corresponding
to distinct clinical endpoints, namely overall survival and
death. Let x̄s be the average value of variable x for those
subjects who survived and x̄d , for those who did not. The
tested null hypothesis is equality of two means, x̄s = x̄d,
and the test statistic is obtained as:

t = x̄d−x̄s√
Vd
nd

+ Vs
ns

,

with analogous subscript annotations for variance V and
population size n. Since multiple tests are performed, the
Hochberg correction [16] is applied to p-value required to
reject the null hypothesis.

Information gain Wehave recently developed amethod-
ology for testing relevance of variables using information
theory [15, 17]. To identify variables x ∈ X which exhibit
statistically significant influence on a response variable Y
we use the conditional mutual information between Y and
x given the subset S: S ⊂ X:

IG(Y ; x|S) = H(x, S) − H(Y , x, S) − [H(S) − H(Y , S)]

where H(x)denotes the information entropy of the vari-
able x.
IG(Y ; x|S) can be interpreted directly as the amount of

information about the response variable Y, that is con-
tributed by the variable X to the subset S. It is always non-
negative and becomes zero when the variable contributes
no information to the subset.
It is worth noting that in the univariate case, i.e. if the

subset S is empty, IG(Y ;X|S) reduces to the mutual infor-
mation of Y and X, commonly used to test the statistical
association between the variables.

https://bit.ly/2K0jkwi
https://bit.ly/2K0jkwi
https://bit.ly/2yod7FC
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IG(Y ;X|∅) = IG(Y ;X)

The conditional mutual information has been already
used in the context of minimal-optimal feature selection,
see for example [18–21]. However, it has not been used
for identification of the synergistic relevant variables. For
non-empty subset S the exhaustive search over all possible
tuples of variables xi1 , . . . , xik is performed. The maximal
information gain

IGmax(x) = maxS⊂X(IG(Y ; x|S))
is a measure of relevance of variable x. Statistical signif-
icance of IGmax(x) can be assessed using extreme value
distribution of IGmax computed for all variables in the
exhaustive search.
The dimensionality of the exhaustive search is limited

both by the need for adequate sampling of data and by
computational resources. Two cases are explored in the
current study, namely S = ∅ and |S| = 1. In the first case,
labeled as IG-1D, a simple univariate search for relevant
variables is performed, whereas in the second one, labeled
as IG-2D, for each tested variable xi ∈ X all pairs with
xj ∈ X are examined.

Selection of the feature subset
In most cases relevant variables identified by the filters
mentioned in the previous section are too numerous to
be useful for further analysis. Therefore, a procedure for
selecting a subset of variables is necessary. To this end,
we sort variables according to the p-value of the relevance
score and select top N variables, N ∈ {10, 20, 50, 100}.
In the case of t-test one more set of relevant variables is
obtained by building the lasso regression [22] model for
the response variable and selecting variables present in
N-dimensional models, with N ∈ {10, 20, 50, 100}.
No additional selection was performed for the subset

of top N features, in particular no removal of redundant
or correlated variables. The initial tests have shown that
removal of correlated variables has generally no effect on
the quality of final models. In some cases, the quality was
slightly improved, but for some others it decreased with
no measurable net effect overall.

Predictive models
Predictive models were built using selected informative
variables with the help of Random Forest classification
algorithm (RF) [23] implemented in the randomForest
library [24] in R [25]. Random Forest is a general purpose
machine learning algorithm for classification and non-
parametric regression that is widely used across multiple
disciplines. It is an ensemble of decision trees. Each tree
is built using a different sample of data, and each split
of a tree is built on a variable selected from a subset of
all variables. The randomness injected in the process of

tree construction has two effects. On one hand, it signif-
icantly decreases classification of the individual tree. On
the other, it decorrelates individual classifiers and helps
to decrease overfitting. What is more, for each tree there
is a subset of objects, that were not used for construc-
tion of this tree, so called out of bag (OOB) objects. This
allows for an unbiased estimate of the classification error
and variable importance. For each object there are several
trees that did not use it for model building, hence it is an
OOB object for these trees. To estimate the classification
error all trees predict the class for their OOB objects. The
predictions are then pooled together and the class for each
object is assigned by vote of all OOB trees. This predic-
tion is then compared with the true class of each object to
estimate quality of the model. Quality estimates based on
this procedure are called OOB estimates.
Random forest has many applications in bioinformatics,

for example in gene expression studies [26, 27], in discov-
ering protein-protein interactions [28, 29], or in genetic
association studies [30–32]. In a recent comparison of 179
classifiers from 17 families, performed on 121 data sets,
classifiers from the RF family have shown the best and the
most robust performance [33]. In particular, the perfor-
mance of RF classifiers was usually very close to the best
achieved for a particular problem. Only in a handful of
cases was it significantly worse than the best one.
The alternative algorithm that is frequently used for

analysis of gene expression data is Support Vector
Machine (SVM) [34], which usually gives very good clas-
sification results for this type of data. The comparisons
between the two methods have first shown a slight advan-
tage of Random Forest for analysis of gene expression [26].
These findings were not confirmed in another study [35],
which has shown a slight advantage of SVM. Neverthe-
less, both algorithms are still used for building predictive
models for gene expression, and some new reports show a
relative advantage of Random Forest over SVM on various
sets of problems [36, 37].
Two properties of Random Forest classification algo-

rithm make it particularly suitable for the current study.
The first one is a natural propensity of Random Forest
for discovering complex nonlinear and non-continuous
relations in data. This property is ideally suited for the
goal of the study, namely a search for possible non-linear
synergies between variables describing different biologi-
cal phenomena. Indeed, our own experience with Random
Forest classifier shows that in the presence of highly linear
interactions between variables it has significantly bet-
ter accuracy than SVM [38]. Another advantage of RF
for the current study is the low sensitivity of results to
the selection of parameters. Random Forest has few tun-
able parameters, and the results are usually only slightly
dependent on them. In particular, the two most important
parameters are the number of trees in the forest and the
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number of variables tested when a split is generated. In
comparison, the performance of SVM is critically depen-
dent on the selection of the kernel function suitable for
the particular dataset. What is more, tuning of the param-
eters of the kernel function is usually required, which is
often a computationally intensive task. In our approach
all tuning of parameters would be performed within a
cross-validation loop. The application of RF with default
parameters allows to avoid this computational burden.

Comparisons betweenmodels
The predictive power of each model is estimated using
Matthews correlation coefficient (MCC) [8], following the
approach proposed by Zhang et al. [4]. MCC is a mea-
sure proposed for estimation of classification performance
for imbalanced data sets. It is a measure of the predic-
tive power of models, obtained as a geometric mean of
informedness and markedness of a model computed from
the confusion matrix, see [39] for a thorough explanation.
It is an unbiased measure that treats both classes with
equal weight and is generally recommended formeasuring
quality of machine learning models [40].
Models are compared using three approaches that dif-

fer in the level of independence between training and test
set. In the original setup of Zhang et al. the full data set
was split randomly in two parts - the training set used
for model building and test set used for evaluation of pre-
dictive power. Additionally, the predictive power of the
models was evaluated in 10 repeats of cross-validation
performed on the training set. Unfortunately, this setup
has several significant drawbacks. Firstly, the models are
built using only half of the available data. While this may
not be a problem for large data sets, the smaller data
set in the current study contains only 38 subjects in the
minority class. This is a small sample, that may signifi-
cantly limit the quality of the model. What is more, the
performance on the test set depends strongly on the sin-
gle split of data between training and test set. The more
or less fortuitous fit of the model to the particular split is
a single most significant factor influencing the results in
such a design, and therefore it is useless for comparison of
different modelling strategies.
Instead, we propose a three-stage setup for comparison

of modelling strategies. In each stage a different balance
between bias and error is obtained by using a different
split between training and test sets for different steps of
model building.

Minimum error – maximum bias: In the first stage all
available data is used for the entire modelling process -
both for feature selection and for model building. This
stage gives the most optimistic estimate of the quality of
the models. Due to the construction of the Random Forest
model, a nearly independent estimate of the model quality

is still possible even at this stage by means of the the out
of bag (OOB) error estimate.

Intermediate bias and error: In the second stage the
feature selection step is performed once, using all available
data. Then, modelling is performed using k-fold cross-
validation. Multiple repeats of cross-validation procedure
are performed to alleviate the dependence of results on
a single split of data. In each repeat the data set is inde-
pendently split into k parts. To preserve the proportion
of minority and majority class in each part, both classes
are split separately and then merged. Then the following
procedure is applied:

1 build a training set using k − 1 parts, assign the
remaining part as a test set,

2 build a model on the training set,
3 evaluate model performance on the training set,
4 evaluate model performance on the test set.

The performance estimate is obtained as an average over
all independent models.
The second stage allows to estimate the size of two

possible effects. The first one is a possible difference of
predictive power between OOB and cross-validated esti-
mate. The second one is a possible decrease of predictive
power due to decreased size of the training set in com-
parison with the entire sample. It can be observed as
decreased OOB estimate of MCC in the second stage in
comparison with the first stage.

Minimum bias – maximum error: In the third stage the
entire modelling procedure, including the feature selec-
tion step, is performed multiple times within k-fold cross-
validation scheme. Within each repeat the training and
test data sets are obtained identically to the previous stage.
Then, the following procedure is applied in each iteration
of the cross-validation loop:

1 build a training set using k − 1 parts, assign the
remaining part as a test set,

2 perform feature selection procedure using data from
training set,

3 build a model on the training set,
4 evaluate model performance on the training set,
5 evaluate model performance on the test set.

This stage allows to estimate the influence of overfitting
due to feature selection process. The possible difference
between OOB and cross-validated estimate of MCC of
models may arise due to the combination of three effects

• overfitting due to feature selection,
• overfitting in the OOB estimate of error,
• decrease of predictive power due to smaller sample

size.
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The two latter effects can be accounted for by using esti-
mates from stage two, hence, any additional effect will be
due to feature selection.What is more, the average predic-
tive power obtained by this full cross-validation is our best
conservative estimate for the predictive power on new
subjects.

Aggregation of data sets
One of the goals of the current study is to examine
whether merging information from different technologies
(microarray and RNA-seq for gene expression) or per-
taining to different biological phenomena (copy number
variation and gene expression) can improve our predic-
tions of clinical endpoints for neuroblastoma. To this end,
we first identified informative features in all experiments
and then created data sets that include relevant features
from all pairs of experiments. Then Random Forest mod-
els were built on these data sets. Results and predictive
power of models built on different features was compared.
We have performed preliminary tests of an alternative

procedure where pairs of data sets were merged into a
single data set and then feature selection algorithms were
applied on a joint data set. It is worth noting that such
a procedure has lower sensitivity for univariate methods,
due to larger number of variables used in Bonferroni cor-
rection, and it cannot change ranking of variables from the
same data set. On the other hand, synergies between data
sets should be discovered by IG-2D method. Unfortu-
nately, no significant synergies were found when analysis
was performed in this way neither between data sets
representing different experimental techniques for mea-
suring gene expression nor between gene expression and
CNV data sets. Therefore, this alternative procedure was
not pursued further.

Results
Informative variables
Informative variables were identified for each data set
separately. All three filtering methods discovered numer-
ous informative variables in gene expression data analysed
with microarrays and various RNA-seq protocols. The

summary of the findings is presented in the Table 1.
The number of informative variables in these data sets
varies between eight hundred identified by IG-2D filter for
microarray data in small cohort, to nearly fifty five thou-
sand identified also by IG-2D filter for transcript data in
the larger cohort. Two clear trends can be observed in the
data. Firstly, there is a dramatic gap in sensitivity of fil-
ters between the two data sets, in particular for both filters
based on information theory. In the case of t-test increase
of number of informative variables increases 5- to 10-fold
between smaller and larger cohort, whereas for IG-2D fil-
ter the increase is 7- to 22-fold. Secondly, the sensitivity
of t-test is the highest for all gene expression data sets in
small cohort, but is the lowest for larger cohort. This is a
mirror image of the IG-2D filter that is the least sensitive
for smaller cohort and themost sensitive for larger cohort.
The only exception is the copy number variation data,

where the number of informative variables varies between
5 for a t-test and 37 when filter based on pairwise interac-
tions information is used. What is more, the three meth-
ods identify rather similar sets of variables for microarray
data, whereas divergent sets of variables are obtained
for CNV data, see Fig. 2.
This number of informative variables in gene expression

data is certainly too large to be useful and a procedure
for selecting variables for building predictive models is
required.

Informative variables for 145 subjects
The main focus of the CAMDA experiment is on the inte-
gration between data obtained with the help of different
technologies, such as measuring gene expression using
microarrays and RNA-seq, or relating to different biolog-
ical phenomena, such as studying copy gene expression
and genetic variation. This analysis can be performed only
on the smaller cohort, hence, the more detailed analysis
was focused on this subset of data. The number of vari-
ables deemed relevant by all filtering methods is much too
large for detailed analysis and for model building, hence,
we limited the analysis to fifty most important genes iden-
tified in MA-145, G-145 and CNV data sets. Two gene

Table 1 Informative variables discovered by three filtering methods in all data sets

Data set

CNV MA G J T MA G J T

Variables 145 subjects 498 subjects

All 39115 43349 60778 340414 263538 43291 60778 340414 263538

Used∗ 39114 43349 40660 340414 208856 43291 41104 340414 208058

T-test 5 1152 1096 2738 3726 6420 8180 37011 38324

IG-1D 25 900 1008 1825 2844 6364 9690 36915 46169

IG-2D 37 807 878 1457 2445 11307 11243 44927 54987

*Multiple markers in genes and transcript series of RNA-seq data are incomplete, with data missing for most patients. Only markers for which at least 50% of records is
non-zero for both decision classes were included in the study
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expression data sets were selected for the analysis due to
better performance of predictive models built on these
data sets in comparison with those built on J-145 and T-
145. The examination of modelling results reveals that
models utilising 50 variables usually give predictions as
good, or nearly as good as those built using 100 variables,
and significantly better than those built using 20 variables,
hence, this number was selected for analysis. Since the
number of relevant genes is smaller then that number for
CNV data set, all genes were examined for this data set.

In particular, we examined the following questions:

1 what genes are identified as most relevant?
2 to what extent sets of most informative genes in gene

expression data are similar across technologies and
across filtering methods?

3 which genes are consistently shown as most relevant
for each technology?

4 are the genes indicated as most relevant in CNV data
set also relevant in gene expression data?

A clear and simple answer may be given to the last ques-
tion. None of the genes identified as relevant in CNV data
set, were identified as relevant in MA-145 or G-145 data
set, hence the copy number variance is not reflected in the
most important gene expression levels.

Gene expression Microarrays and RNA-seq don’t agree
very well on which genes are most informative for the
overall survival, see Table 2. The number of genes iden-
tified by both technologies within top 50 genes with
the help of at least single filter is 16, out of 88 and
100 genes selected to top 50 by at least one filter from
MA-145 and G-145 data sets, respectively. Only three
genes, namely PGM2L1, SLC22A4 and PRKACB were
included among highest ranked by all filters in both
MA-145 and G-145 data sets. All these genes have
been previously identified as important neuroblastoma
markers [41–43].
When single filters are considered separately the t-test

and IG-2D each find only 7 genes that are in top 50 most
relevant in both technologies. In comparison, IG-1D filter
is more consistent since it finds 10 genes that are most
important both in MA and RNA-seq data. The agreement
between different filters is much higher when measured
on the same data set, see Fig. 1.
The two experimental techniques under scrutiny both

report the gene expression level, nevertheless the values
reported for the same gene by both technologies are dif-
ferent, as discussed earlier. Therefore, direct comparison
of the gene expression levels measured by two techniques
is not feasible. However, an interesting analysis can be per-
formed by comparing expression level of two groups of

Table 2 Informative genes that were identified as most relevant
in MA-145 and G-145 data sets

MA-145 G-145

Ranking by Ranking by

Gene T-test IG-1D IG-2D T-test IG-1D IG-2D

PGM2L1 1 4 1 1 3 1

SLC22A4 2 20 23 2 13 12

PRKACB 29 1 19 34 4 2

DOC2B 28 7 13 - 37 20

PIK3R1 - 21 9 - 10 6

NTRK1 - 17 8 - 32 32

NRCAM 4 12 - - 19 -

ALDH3A2 6 - 47 5 - -

DST - - 3 - 43 -

A_32_P30874 32 2 2 - - -

Hs23691.1 11 29 4 - - -

PLXNA4A 45 3 15 - - -

HSD17B3 3 34 - - - -

ACN9 - - - 7 5 4

Slartoybo - - - 19 1 5

LOC100289222 - - - 18 20 3

Sneyga - - - - 2 10

SPRED3 - - - 3 42 -

Jardarby - - - 4 - -

All genes that were ranked in top 10 most relevant by any filtering method in either
data set are shown. The numbers in each column correspond to ranks achieved by
genes in a data set, processed by one of three filtering methods. Genes present in
top 50 variables in both data sets are shown first, followed by those present in top
50 only in MA-145 data set, and then by those exclusive in top 50 in G-145 data set

genes within each technology separately. To stress that we
don’t compare expression levels directly, we use the notion
of signal strength for this comparison. Interestingly, the
average signal strength for genes identified as most rel-
evant for MA-145 and G-145 data sets was identical to
the average signal strength for genes identified as most
relevant only in MA-145 data set. The signal strength
obtained with the microarrays is 12 ± 3 and 11.2 ± 0.6,
for the common set and for the set unique to MA-145,
respectively. On the other hand, the signal strength mea-
sured with RNA-seq for genes identified as relevant only
in G-145 data is 12.5±0.7 which is significantly lower than
15 ± 2, that is a signal strength measured by RNA-seq for
the common set. This suggests that RNA-seq experiments
can reveal strong biological signal in weakly expressed
genes better than microarray experiments.

Copy number variation The number of variables identi-
fied as relevant in the CNV data set is small in comparison
with gene expression data, which can be expected on bio-
logical ground. The three filtering methods give widely
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Fig. 1 Venn plot for top 50 informative features identified in MA-145 (left panel) and G-145 (right panel) data sets

divergent results, with only one gene identified as relevant
by all three methods, see Fig. 2. Five additional genes were
identified as relevant by two methods, see Table 3. Inter-
estingly, two highest ranking genes, ZNF644 and ZZZ3
code zinc finger proteins. Both genes are involved in reg-
ulation of chromatine activity via histone modifications
[44, 45]. TMED5 is involved in vesicular protein traffick-
ing [46], QKI is involved in in mRNA regulation [47],
and PLEK2 regulates actin organization and cell spreading
[48]. All these biological roles are very plausible for their
influence on the progress of neuroblastoma.

Predictive models - overview
The predictive models have been built using the three
stage approach described earlier. For all data sets a similar
pattern of MCC behaviour is observed. The MCC val-
ues obtained for all cases where a model is tested using
the data set used for feature selection are close to each

other. This includes all OOB estimates for stages one, two
and three, as well as cross-validated estimate of stage two.
On the other hand, significant drop of predictive power is
observed in the cross-validated estimate in stage three.
The bias due to feature selection procedure is much

higher for data sets describing the smaller cohort. MCC is
inflated by 0.10 - 0.13 in this case, compared with the bias
of 0.02 for data sets describing larger cohort.
However, the overall results are better for the smaller

cohort. The average cross-validated MCC obtained for all
models and all data sets is 0.597 and 0.530, for the smaller
and larger cohort, respectively, see Table 4.
The results obtained for RNA-seq andmicroarrays were

very similar for the larger cohort, with slightly lower qual-
ity models obtained on J-498 and T-498. On the other
hand, for smaller cohort the difference obtained for J-145
and T-145 data sets were significantly worse than those
obtained for MA-145 and G-145 data sets. Taking into

Fig. 2 Venn plot for sets of informative features identified in CNV-145 (left panel) and MA-145 (right panel) data sets. There is little overlap between
informative features identified by three methods for CNV data. In particular, there is only one variable recognised as relevant by all three filtering
methods. The agreement for the gene expression is much higher - for each method the number of variables that is common with at least one other
method is larger than 68% of all variables identified as relevant by this method
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Table 3 Informative genes that were identified as most relevant
in the CNV data set

Ranking by

Gene T-test IG-1D IG-2D

ZNF644 2 4 19

ZZZ3 - 1 2

TMED5 - 10 1

PLEK2 1 15 -

QKI 4 16 -

A_14_P117576 5 21 -

KIAA0090 - - 3

ANKRD13C - 3 -

FNDC1 3 - -

GUCA2B - - 4

C1orf160 - - 5

LPHN2 - 5 -

The numbers in each column correspond to ranks achieved by genes processed by
one of three filtering methods – t-test, IG-1D or IG2D. All genes that were ranked in
top 5 most relevant by either method are displayed

account that impact of genetic variation is estimated only
for the smaller cohort, and that the aim of the current
study is exploring integration of various data sets, fur-
ther analysis of gene expression is limited to MA-145 and
G-145 data sets.
It is worth noting that lower quality of predictive mod-

els for larger sample is unusual – improved sampling
normally leads to better models. Apparently, recruit-
ment of patients to the smaller sample was non-random
and included patients for whom predictions were easier.
Another interesting effect related to the sample size is the
relative quality of models built using MA and G data sets
in comparison with those built using J and T data sets. The
MCC for models based on J-498 and T-498 data sets is
lower by roughly 0.01 thanMCC achieved by models built

Table 4 Aggregate results for all models based on gene
expression

Data series

Cohort size MA G J T

Max

145 0.674 0.672 0.606 0.625

498 0.545 0.556 0.543 0.543

Average

145 0.634 0.629 0.556 0.569

498 0.535 0.538 0.525 0.524

Maximum and average MCC obtained for all fully cross-validated models built for
each data series are displayed for both cohort sizes

using on MA-498 and G-498. On the other hand, anal-
ogous difference for smaller cohort is roughly 0.06. This
is probably due to higher noise in junction and transcript
data in comparison with direct gene measurements that
has dramatic effect on reliability for smaller sample size.

Results for the smaller cohort
The three-stage setup allows for a precise estimate of the
influence of different factors on the quality of predictive
models in the cross-validation loop. These effects can be
observed by closer examination of results presented in
Table 5 and Table 6, where results obtained for MA-145
and G-145 respectively, are presented.
The first effect that may influence the result is due to

the decrease of the training set size in cross-validation.
In five-fold cross-validation the training set is 80% of the
total. The influence of this effect, is estimated as the dif-
ference of MCC measured using OOB estimate in the
first and second stage. The decrease of MCC is 0.012 and
0.020 for MA-145 and G-145, respectively. The second
effect, often observed for Random Forest classifier, is a
slight increase of the predictive power in external cross-
validation in comparison with the OOB estimate. This
effect may arise since fewer trees (roughly one third) par-
ticipate in OOB classification of each object in compar-
ison with classification of external validation set. Within
the current scheme it can be estimated by taking the dif-
ference between MCC obtained in cross-validation and
OOB in the second stage. The difference is 0.012 both for
MA-145 and G-145 data sets. The third possible effect is
overfitting of the classifier due to feature selection. There
are two manifestations of this effect. Firstly, the OOB esti-
mate obtained in cross-validation is artificially inflated.
This happens because fortuitous selection of objects to
the training set may artificially inflate the importance of
some variables in it in comparison with the entire sample
and allow to build an overfitted model. This effect can be
measured as the difference of the OOB estimate of MCC
between third and second stage. This difference is 0.012
for the MA-145 data set and 0.011 for the G-145 data set.
One should note that since importance of some variables
is artificially inflated for the training set, it will necessarily
be decreased for the validation set. Hence, the classi-
fiers using this variable will be worse on validation set
than on general population. What follows, this effect may
artificially bias the estimate of performance downwards.
Finally, the sample contains a certain pool of objects that
are misclassified with probability higher than 90%, see
Fig. 3. The split of these objects between training and val-
idation set has a significant role for OOB and validation
set estimate of MCC. In particular, MCC can be very high
when none of these objects is in the validation set, and
it can be very low, when they are plenty. The excessive
estimate of overfitting on validation set is demonstrated
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Table 5 Model quality measured with MCC coefficient for the MA-145 data set

OOB Cross-validation

FS metod Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Stage 1

T-test 0.642 0.707 0.700 0.720

IG-1D 0.753 0.728 0.738 0.736

IG-2D 0.713 0.747 0.730 0.726

T-test + lasso 0.744 0.869 0.820 0.822

Stage 2

T-test 0.622 0.683 0.693 0.713 0.636 0.698 0.709 0.730

IG-1D 0.732 0.721 0.729 0.730 0.741 0.727 0.737 0.737

IG-2D 0.695 0.734 0.721 0.721 0.699 0.743 0.731 0.729

T-test + lasso 0.732 0.854 0.808 0.809 0.750 0.868 0.831 0.832

Stage 3

T-test 0.655 0.691 0.714 0.724 0.576 0.606 0.647 0.665

IG-1D 0.735 0.742 0.747 0.748 0.605 0.638 0.661 0.674

IG-2D 0.705 0.721 0.730 0.734 0.609 0.636 0.655 0.670

T-test + lasso 0.780 0.831 0.808 0.820 0.651 0.663 0.648 0.643

by a negative correlation (average correlation coefficient
r = −0.42) between OOB and cross-validated estimates
of MCC, see Fig. 4 (the MCC for this Figure were com-
puted for 500 training- and validation- set pairs).
For each data series the three methods based on selec-

tion of N variables with highest p-value have very similar
behaviour. The quality of the model measured using OOB

is very similar for all three stages, and similar to the
cross-validated measure obtained using single ranking of
variables obtained using all available data. However, the
predictive power of models developed using fully cross-
validated approach is strongly diminished. On the other
hand, the models that used variables selected by applying
lasso to the feature set identified by t-test are different. For

Table 6 Model quality measured with MCC coefficient for the G-145 data set

OOB Cross-validation

FS metod Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Stage 1

T-test 0.703 0.720 0.719 0.713

IG-1D 0.788 0.784 0.801 0.796

IG-2D 0.793 0.768 0.738 0.763

T-test + lasso 0.790 0.834 0.862 0.861

Stage 2

T-test 0.683 0.709 0.714 0.704 0.692 0.719 0.716 0.712

IG-1D 0.732 0.767 0.766 0.762 0.741 0.782 0.778 0.774

IG-2D 0.729 0.733 0.743 0.759 0.743 0.753 0.756 0.771

T-test + lasso 0.792 0.827 0.848 0.848 0.802 0.840 0.865 0.867

Stage 3

T-test 0.689 0.713 0.723 0.724 0.590 0.621 0.650 0.653

IG-1D 0.750 0.771 0.774 0.770 0.589 0.626 0.661 0.672

IG-2D 0.738 0.755 0.760 0.755 0.585 0.621 0.650 0.661

T-test + lasso 0.829 0.832 0.853 0.854 0.599 0.661 0.655 0.638
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Fig. 3 Distribution of fraction of correctly classified objects. For each object the position in y axis corresponds to the fraction of times this object was
correctly predicted in cross-validation

these models a drop of cross-validated measure of MCC
is similar for second and third stage. This result shows
the extent of quality decrease due to the ranking of vari-
ables and the selection of the set. All variables that entered
the lasso procedure in the second stage were identical for
all 500 individual models. Nevertheless, the selection of
variables that produced the best possible model for the
training set introduces bias. The strength of this bias is
mostly due to the feature selection process itself, not due
to the composition of the original set of variables. This is
particularly clear for the MA-145 data series.

Influence of feature selectionmethods.
Feature selection has limited influence on the quality of
models for MA-145 and G-145 data sets. The overall best
result, MCC = 0.674, was obtained using 100 variables
selected by IG-1D from the MA-145 data set, however,
results obtainedwith 100 variables selected by IG-2Dwere
within the error margin. The best result obtained for G-
145 data set, MCC=0.672, was slightly lower, however still
within the estimated error range. It was also obtained
using 100 variables selected by IG-1D filter. The mod-
els built using variables selected with simple t-test are

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

��

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
C
C

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�
�

� �

�
�

�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�

�

��

G CNV MA MA+CNV

Fig. 4 Distribution of MCC obtained in 400 cross-validation runs at the Stage 3 of the modelling pipeline. Each point, representing MCC value
obtained for a RF classifier prediction for the validation set in the cross validation loop. Each RF classifier was built on the different training set
constructed in the cross-validation loop, using the variables selected as most relevant for a given training set. Values for G-145, CNV, MA-145, and
MA+CNV data sets are presented from left to right. Each box-plot represents distribution of points to its left
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generally worse than those obtained using either IG-1D,
or IG-2D filter. The differences were highest when the
number of variables used to build a model was 10 or 20.
We have also examined whether feature selection by a

more sophisticated algorithm can lead to better results.
For that we built lasso models using variables identified
by t-test and selected N most important variables. Mod-
els built on variables selected by lasso consistently have a
much higher OOB estimate of MCC than all models built
using other methods, with highest MCC obtained for 20
variables. The picture changes when fully cross-validated
estimate of MCC of models is considered. Models built
using 10 or 20 variables selected by combination of t-test
and lasso are still better than those obtained with other
feature selection methods. However, when the number of
variables is increased to 50 and 100 the quality of mod-
els built on variables selected by t-test+lasso procedure
falls. In effect, the best models obtained with this method
are no better than models obtained using simple t-test,
and are significantly worse than models obtained by filters
based on information gain.
It is interesting to note that models based on the features

selected by lasso tend to overfit much more strongly than
models built using simpler top N approach. The average
difference between MCC computed using OOB approach
and MCC computed in cross-validation is 0.21 for t-
test+lasso, whereas for simple filters it is 0.16. Despite that
difference, the correlation between MCC computed using
OOB and MCC computed in a cross-validation is high
- Pearson correlation coefficient between these results is

0.60 for all models generated for gene expression data sets
limited to 145 patients.

Copy number variation.
The copy number data set contains significantly fewer
informative variables than gene expression data sets.
Moreover, models using this data have significantly lower
predictive power, in particular when fully cross-validated
approach is used, see Table 7. In particular, models built
using variables identified by t-test are prone to overfitting
in this case. The average MCC reported for OOB estimate
for fully cross-validated models is 0.48, but it drops to 0.19
when measured by cross-validation. The lasso procedure
does not help in this case, since, due to low sensitivity of
t-test for CNV data set, there are only a few informative
variables identified in each case, and lasso is not used at
all. On the other hand, models built on variables identified
with the help of filtering methods which use information
theory fare much better. The average MCC for models
built utilising IG-1D and IG-2D filtering is 0.26 and 0.31,
respectively. The difference between IG-1D and IG-2D is
small, but statistically significant (p-value < 0.000025).
Interestingly, the models built on variables selected by IG-
2D have lower OOB estimate of MCC than models built
using all other feature selection models.

Synergies between data sets
There are two possible sources of synergy in the cur-
rent study: technical and biological. Firstly, gene expres-
sion was studied using different technologies, namely

Table 7 Model quality measured with MCC coefficient for the CNV-145 data set

OOB Cross-validation

FS metod Top 10 Top 20 Top 50 Top 100 Top 10 Top 20 Top 50 Top 100

Stage 1

T-test 0.566 - - -

IG-1D 0.569 0.646 0.642 0.646

IG-2D 0.460 0.484 0.491 0.492

T-test + lasso 0.568 - - -

Stage 2

T-test 0.534 - - - 0.545 - - -

IG-1D 0.544 0.624 0.617 0.615 0.551 0.635 0.632 0.627

IG-2D 0.443 0.470 0.484 0.484 0.452 0.481 0.493 0.491

T-test + lasso 0.537 - - - 0.554 - - -

Stage 3

T-test 0.476 - - - 0.189 - - -

IG-1D 0.575 0.582 0.583 0.582 0.248 0.257 0.258 0.260

IG-2D 0.502 0.511 0.514 0.514 0.279 0.301 0.308 0.306

T-test + lasso 0.510 - - - 0.193 - - -
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RNA sequencing and microarrays. What is more, RNA
sequencing was represented by three different data sets
measuring slightly different aspects of gene expression.
Secondly, two different biological phenomena were mea-
sured, namely gene expression and copy number variation
of genes. In the search of synergy we have analysed pos-
sible pairwise synergies between selected data sets. In
particular, we have checked for possible technical synergy
using MA-145 data set and all RNA-seq data sets. We
have also measured possible technical synergy between
data sets using different feature selection algorithms. In
both cases no synergy was observed - models built using
mixed sets of variables had lower cross-validated MCC
than those achieved for at least one of the data sets
under scrutiny.
More interesting results were obtained when biologi-

cal synergy was examined.We explored possible synergies

using variables selected from either G-145 or MA-145
data sets merged with variables selected from CNV-145
data set. For each feature selection method fifty highest
scoring variables were selected from either gene expres-
sion data set. Then, the feature set was extended by all
variables identified as relevant by the same method. Next,
predictive models were built using the joint feature set.
The increase of MCC for mixed data sets with respect

to the pure gene expression feature set were observed for
both MA-145 and G-145 on the OOB level, see Table 8.
In stage 2, where all variables were selected once, the
increase was small but consistent and confirmed in cross-
validation. Unfortunately, the results were not clear-cut
in stage 3. Here, the increased MCC was again demon-
strated in OOB estimate. However, the increase on the
validation set was either non-existent or too small for clear
confirmation. The highest increase, 0.005, which was still

Table 8 Synergies between data sets

Data set MA-145

OOB Cross-validation

Feature set MA50 CNV MA+CNV Syn. MA50 CNV MA+CNV Syn.

Stage 2

T-test 0.693 0.537 0.693 -0.001 0.709 0.546 0.698 -0.011

IG-1D 0.729 0.617 0.755 0.026 0.737 0.632 0.765 0.028

IG-2D 0.721 0.484 0.740 0.019 0.731 0.493 0.750 0.020

T-test + lasso 0.808 0.536 0.804 -0.004 0.831 0.553 0.827 -0.004

Stage 3

T-test 0.714 0.479 0.717 0.004 0.647 0.192 0.632 -0.015

IG-1D 0.747 0.583 0.764 0.017 0.661 0.258 0.662 0.001

IG-2D 0.730 0.514 0.740 0.010 0.655 0.308 0.656 0.000

T-test+lasso 0.808 0.506 0.825 0.017 0.648 0.194 0.652 0.005

G-145

OOB cross-validation

Feature set G50 CNV G+CNV Syn. G50 CNV G+CNV Syn.

Stage 2

T-test 0.714 0.537 0.720 0.006 0.716 0.546 0.725 0.009

IG-1D 0.766 0.617 0.780 0.014 0.778 0.632 0.786 0.009

IG-2D 0.743 0.484 0.747 0.004 0.756 0.493 0.757 0.001

T-test+lasso 0.848 0.536 0.853 0.005 0.865 0.553 0.868 0.003

Stage 3

T-test 0.714 0.478 0.730 0.016 0.650 0.192 0.640 -0.011

IG-1D 0.747 0.582 0.786 0.039 0.661 0.258 0.662 0.001

IG-2D 0.730 0.511 0.767 0.037 0.650 0.308 0.650 0.000

T-test+lasso 0.808 0.506 0.858 0.050 0.655 0.194 0.655 0.000

Synergies between data sets displayed for two stages of the analysis for MA+CNV and G+CNV data sets. MA50 and G50 are sets MA-145 and G-145 data sets limited to top 50
variables, respectively. Cases, for which MCC for mixed model is higher then either of the components, suggesting possible synergy are highlighted in boldface
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not significant, was obtained for the t-test + lasso method
on the MA-145 data set, but this result may arise due to
less overfitting in the model building stage and not due to
genuine biological effects.

Discussion
The small size of the data set, in particular the small
number of objects in the less numerous class, presents
the main challenge to the current study. The imbalance
between survivors and non-survivors poses several dif-
ficulties and requires special care when designing the
research protocol. In particular, it affects the design in
two important aspects. The five-fold cross validation, with
stratified selection of objects to training and validation
samples, was used to ensure that training set contains
sufficient number of objects for feature selection and for
model building. We have observed a significant decrease
of quality of models in three-fold cross-validation.
Secondly, due to the small number of samples the vari-

ance of the results was very high. Therefore, the high num-
ber of repeats in cross-validation was required to achieve
good separation of results with different means. To this
end, we have built 100 independent full cross-validation
cycles for each data set and each combination of feature
selection method and number of variables. This translates
to construction of 500 independent Random Forest mod-
els, for each estimate ofMCC.What is more, in stage three
each model requires performing independent feature fil-
tering. Filtering is very quick for t-test and IG-1D, but may
take between roughly a minute for G-145 and MA-145
data sets, and a few hours for J-498 and T-498 data sets,
when IG-2D is used. Consequently, the entire procedure
is time consuming and requires substantial computational
resources.
Finally, the ultimate cross-validated estimates of the

model quality are most likely biased downwards, as
demonstrated by negative correlation between OOB and
validation set estimates of MCC. The influence of this
effect may be estimated by converting the results of the
entire cross-validation scheme to a new ensemble clas-
sifier, consisting of 500 independent models, each built
using a different subset of objects and a different subset
of variables. Each object has been set aside to the valida-
tion set once per full cross-validation loop, hence, we can

have OOB estimate of performance for this ensemble of
Random Forests. This measure may be a better estimate of
the true performance of the classifier than that obtained
as a simple average MCC over 100 repeats of the cross-
validation scheme. The comparison of three estimates of
MCC for MA-145 and G-145 obtained for models built
using 100 variables is given in Table 9. One can see, that
eight MCC estimates obtained for ensemble of forests for
two different data sets and four different feature selection
methods are fairly similar, despite larger differences both
in OOB and cross-validated estimates. While we are not
able to verify this conjecture within the framework of the
current study, we may nonetheless treat it as a reasonable
hypothesis.
Interestingly, analysis of the ensemble classifier shows

that there are three classes of patients. The first, most
numerous one, consists of the correctly classified patients
for whom there is a very high (close to 100%) agree-
ment between all member classifiers in the ensemble.
Roughly 75% of objects in the smaller cohort belongs to
this class. The second class consists of patients for which
decision varies in different repeats of the cross-validation
procedure. Roughly 15% of patients belongs to this class.
Finally, roughly 10% of patients are incorrectly classified
with very high agreement of decisions in different repeats
of the cross-validation procedure. The existence of this
group of patients shows the limits of predictive models for
neuroblastoma based on molecular data.

Conclusions
There are four main findings of the current study. Firstly,
we have proposed a robust framework for evaluation of
predictive models for small data sets, for which split of
data between training and validation set may result in
significant drop of accuracy due to insufficient sampling.
This framework allows for the estimation of bias, which
arises due to selection of variables that are best for model
building in the context on the current sample. Application
of this framework allows to project ranking of models esti-
mated on the training set to the ranking on the validation
set. The correlation between performance of models on
the training set and validation set is 0.6, compared to cor-
relation 0.04 obtained in the study by Zhang et al. [4] who
presented the first analysis of the data sets examined in the

Table 9 Three estimates of MCC

Feature selection method

Estimate type T-test IG-1D IG-2D T-test+lasso T-test IG-1D IG-2D T-test+lasso

MA-145 data set G-145 data set

OOB 0.720 0.736 0.726 0.822 0.713 0.796 0.763 0.861

Cross-validation 0.665 0.674 0.670 0.643 0.653 0.672 0.661 0.638

Ensemble 0.702 0.727 0.711 0.699 0.689 0.705 0.712 0.698
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current work. The cross-validated approach allows also
to construct an ensemble classifier. In this higher-level
ensemble of Random Forests, for each object a prediction
made by elementary Random Forest within the cross-
validation is treated as a single vote for the class of a
given object. The estimate of MCC for this ensemble clas-
sifier is higher than the average MCC obtained in cross-
validation. It is also our best guess for the performance on
the new data for ensemble of classifiers developedwith the
presented methodology.
We have also examined the possibility of an increase

of the predictive power of models built using combi-
nations of data sets. The small synergy between copy
number variation and gene expression was observed for
the OOB estimate of MCC, but it was not confirmed in
cross-validation. We hypothesize that this synergy could
be confirmed if a larger sample size was to be used. This
increase was observed despite very weak predictive power
of models built on CNV alone.
Only a few genes were consistently discovered as most

informative by all filtering methods for gene expression
data sets, however, those for which all methods were in
agreement were previously identified as related to neurob-
lastoma. Interestingly, the average gene expression level
for the genes commonly identified as relevant in microar-
ray experiments and RNA-seq was identical to those iden-
tified as the most relevant by microarrays only. On the
other hand, the genes that were identified by RNA-seq
only had a significantly lower average expression level.
This result aligns with previous findings that RNA-seq
allows to identify significant genes with lower expression
levels due to higher resolution and lower noise level of the
method in comparison with microarray experiments [49].
Finally, despite a divergence of genes identified by dif-

ferent methods for feature selection, models built using
expression of these genes gave similar results, with slight
but regular advantage of filters based on information gain.
The more aggressive feature selection, with the help of
lasso method, gives best results when low number of vari-
ables are used, but overfits for larger data sets. Both filters
based on the information gain show their advantage for
the CNV data set, where they are more sensitive and
allow for building better models. What is more, the results
obtained for the CNV data set demonstrate the utility
of feature selection that takes into account interactions
between variables. The IG-2D filter was most sensitive for
this data set, and, what is more, the models using variables
found by this filter were best for this data set.
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Summary There are technical merits in the study. How-
ever the manuscript language and organization need to be
much improved for clarity. There are obvious grammatical
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that were discovered as relevant for CNV data were then
used in joint models. The disadvantage is that possible
synergies between variables not identified as relevant in
separate analyses could improve models. However, such
synergies should be detectable by our two-dimensional
analysis performed on the joint data set. Unfortunately,
none were observed. We have extended subsection “Aggre-
gation of data sets” section “Methods” section to discuss
this issues.
Reviewer recommendations to authors - please dis-

cuss the different statistical properties and distributions of
the different measurement techniques.
Authors’ response: We have added a discussion of the

statistical properties of the data sets obtained with differ-
ent measurement techniques to the description of data, in
the new the sub-subsection “Statistical properties of gene
expression and CNV data”, “Data”, “Methods” sections
- please describe the different preprocessing pipelines

for the different data types better and discuss the steps to
make these data statistically comparable
Authors’ response: We have added description of data

preprocessing in the new sub-subsection “Data preprocess-
ing” , “Data” and “Methods” sections
- discuss availability of source code.
Authors’ response: The code for computing informa-

tion gain and estimate od the statistical significance is
available as the open source module MDFS deposited on
CRAN. The scripts for performing analyses are available
on request. We have added an appropriate note in the
section “Availability of supporting data.”

Reviewer’s report 3: Dimitar Vassilev
Reviewer summary The submitted text for paper is of
definite interest focussing the domain of problems con-
cerning the prediction of survival time in neuroblastoma
cancer studies. Among the given approaches for features
selection there is some advantage of the models based
on information entropy as compared to the pure sta-
tistical (t-test) and machine learning predictive models.
Despite of the fact that obtained results are not with dras-
tic improvement from some previous studies of the same
type (Zhang et al. 2015) there are some valuable outcomes
in the submitted work. First obvious merit is the capacity
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of authors in using various models with various features
selection, with various data sets, organized in a of frame-
work. The second technical achievement of the work is
suggesting ways of increasing of the predictive power of
the models. And the third benefit of the work is the com-
parison of prognositc models for integrated sources of
information from gene expression (GE) and copy num-
ber variants (CNV) which has a potential to give some
quality in discovering more genes, strongly related to sur-
vival time. Although, there are some obvious obstacles
to obtain results of good value - strongly connected with
the data by itself and less connected with the models and
approaches used. The provided data at first sight per-
haps is good for a research publication but it is obviously
very limited in number and unbalanced. The set of 145
patients: split in 107 and 38 by surviving trait is obviously
not enough for applying such set of methodological tools
- in particular in classifying the data and making predic-
tions by machine learning. This criticism could be related
also to CAMDA challenge which provided the data and
the tasks for analysis, but nevertheless the data is as it is
and the results from the study are related to this particular
data and not to other one. Aside with that there is obvi-
ous data dependance, which in particular influenced the
analysis when the data set is split in smaller sets aiming
at better tuning of features selection. The other problem
which is directly subjective to the authors is the strict use
of models without any larger comparative explanation -
why that has been done. Yes, the models are explained
by themselves but why particularly are used needs more.
Such is the case with Mathew’s Correlation Coefficient
(MCC) which by literature is almost ideal binary classifier
- but definitely it depends on the data and is not too much
universal. Also the Random forest approach as predic-
tive model is well explained by why the machine learning
methodology in the submitted material is based partic-
ularly on the Random Forest. I would suggest authors
to throw more light on the reasons they have selected
those approaches and possibly this will explain some of
the not very eloquent results as small synergy between
CNV and GE. I think that the good think in the submit-
ted work is the not bad implementation of the information
gain method for identification of informative variables.
Such a method is not pure statistical and to my concern
methods from informatics will have some advantage in
such studies in particular where is a desperate need for
avoiding the data dependance as in the submitted mate-
rial. My opinion is that the definite technical outcome
of the paper is that there is some room for improving
the models for survival time prediction by using differ-
ent models, based on different feature selection schemes.
Apart of these my remarks and criticisms I would to rec-
ommend the submitted material to be published after a
careful revision.

Reviewer recommendations to authors
The submitted work is of a good quality and I would

encourage it publishing. There are several obvious merits
of the work mostly connected to the technical aspect
of the analysis. The use of different models for integra-
tive analysis of the survival time for gene expression and
copy number variants in neuroblastoma cancer studies.
The models are based on different approaches for feature
selection by using statistical, informatics and machine
learning methods. The study provides also a framework
for cross-validation protocol, that includes feature selec-
tion within cross-validation loop and classification using
machine learning. The dependence of results on feature
selection is assessed by different models. All these set of
models, approaches, protocols, etc give obvious merits
to the study. Aside with that there are definite problems
obtained and exposed in the study.
Authors’ response:We appreciate the appreciation of the

merits of our work by reviewer, and we agree that there
were some aspects of the study and its description that
could be improved.
Reviewer: The first major problem is the given data

set. It is definitely too small and unbalanced. There are
also some hidden dependencies in the data, in particu-
lar when it is split in smaller subsets for better feature
selection tuning. All these facts affect the subsequent ana-
lytical approaches. The major problem there is possibly
the unbalancedness of the data - 107 vs 38 cases for sur-
vival time prediction. All these facts affect the subsequent
analytical approaches.
Authors’ response: We agree that the data set is small

and unbalanced and it poses difficulties for model build-
ing and validation. In particular, the small size of the data
set and principally the minuscule number of cases in one
class result in a very large variance of results. This had
a decisive influence on the setup of the study. We have
used 5-fold cross validation since the models built within
3-fold cross validation gave significantly worse results also
on the OOB level. The large number of replications of cross-
validation runs (one hundred) was necessary for reducing
the standard deviation of the means to reasonable levels -
the standard deviation of MCC for MA-145 data set was
about 5 times higher than for MA-498. Unfortunately, this
was an external constraint of the study, the organisers of
CAMDA provided such datasets and no more data was
available.
Reviewer: First is the classification methodology - the

popular for unbalanced data sets Mathews Correlation
Coefficient obviously is not the best solution for this
particular data set.
Authors’ response: We don’t agree with the reviewer’s

opinion on MCC, and we believe that this is a very good
metric. A thorough explanation of the properties of MCC
was given by Powers in a highly cited article from 2011
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(Powers, D.M.W., J. Mach. Learn. Technol., 2(1), 37–63).
What is more, the MCC was used by Zhang et al. in the
original study with RNA-seq and microarray analysis of
neuroblastoma. Hence MCC was the natural choice for
comparison with the original study. Nevertheless, we are
grateful to reviewer for raising this issue, since it clearly
has shown a need for a better justification for applica-
tion of MCC for comparisons between models. We have
added the explanation that supports our selection of MCC
in the subsection “Comparisons between models” section
“Methods” sections
Reviewer:The same is the case with Random forest pre-

dictive value classifier as a machine learning approach.
The results obtained by using those approaches can be
related as methodologically poor and the authors need to
elucidate why.Why these approaches are used, can they be
compared to another ones of the same class, are there any
other opportunities. Obviously the aim of the authors to
improve the results given by Zhang et al. (2015) somehow
limits and does not present author’s capacity in choosing
the best combination of models and defining the rea-
sons of the potential results. There is an obvious need for
additionally explanation of the efficiency of the selected
models in the study. I think that for such data will be dif-
ficult to obtain drastically improved results, but it will be
worth to present in the submitted material the reasons of
using such models.
Authors’ response: We don’t agree with the reviewer’s

opinion that selection of the Random Forest is a bad one,
and we have several reasons for that. First, Random Forest
is generally a robust classification algorithm, that has been
used for diverse classes of problems usually with very good
results. Indeed, there is a recent paper (Fernandez-Delgado
et al. J. Mach. Learn. Res 15(1), 3133–3181) devoted to
testingmultiple algorithms on numerous publicly available
datasets. To be more specific, 179 algorithms belonging
to 17 broad families of algorithms were tested on 121
datasets. The best overall results were achieved by algo-
rithms belonging to the Random Forest family. What is
even more important, RF algorithms not only achieved
highest average rankings, but also rarely failed - for most
problems they achieved results that are close to the best
result obtained for the particular problem by any algo-
rithm. Secondly, the RF is actually quite well suited for
gene expression studies. There are well cited papers claim-
ing that better classification accuracy for microarray data
can be obtained with SVM, however, even when the results
obtained with SVM were better, the differences were small
in most cases. What is more, there are some newer papers
showing outcomes with opposite results, cited in the modi-
fied text. The third reason is the computational cost. SVM
requires extensive computations to obtain best param-
eters for particular problems. This includes selection of
the appropriate kernel function and derivation of best

parameters for the kernel. For proper validation within
the framework of the current study, all these computations
should be performed within cross-validation loop, which
would be prohibitively expensive computationally. This
problem does not exist for Random Forest - sound results
are usually obtained with default selection of parameters.
Hence, no optimisation is required, even though in some
cases, one can achieve improved results by tuning the num-
ber of variables considered in creation of split. Finally, the
aim of the study is not achieving the best possible classifi-
cation result, rather the examination of the hypothesis that
a significant improvement of models can be achieved by
synergy between data describing different biological phe-
nomena. Random Forest is a good choice of an algorithm
for discovering non-additive and non-linear effects. Due to
its robustness, one can be assured that it will be able to use
the information - if the information is available at all. We
have extended the “Methods” section to better explain the
rationale for the selection of Random Forest as the classi-
fication algorithm in our research protocol. In particular,
we have rewritten and extended the subsection “Predictive
models” section “Methods” section
Reviewer: This will throw more light on the prob-

lems with the small synergy between different sampled
datasets both in technical and biological context. The use
of data from combined gene expression (GE) and copy
number variants (CNV) at first sight bears more poten-
tial for the predicting power of the models, but unfor-
tunately the limited size of the dataset have a stronger
influence. This affect obviously the discovery of bigger
number of important for survival time genes. Here need
to be emphasised the applicability in such studies pure
statistical, machine learning and informatics approaches
based on features selection. The use of bit more successful
model for informative variables detection as the Infor-
mative gain approach possibly can provide a background
for better choice of the models for data integration and
feature selection at all.
Authors’ response:We were thrilled by possibility of syn-

ergies between CNV and gene expression, and this is why
we undertook the study. However, in hindsight, we think
that it is actually unlikely to observe such synergies in the
large scale, for a simple reason. Most of the CNV’s contri-
bution to the functioning of the cellular machinery should
be already reflected in the gene expression profiles. Dele-
tion of certain genes or multiplication of others should be
reflected in lower or higher expression levels respectively.
Therefore, it should be visible in the expression patterns.
So, even if CNV’s contribute to the development of cancer,
they do it by modifying gene expression levels. One should
also remember that the development of cancer is a random
evolutionary process, and the final outcome depends on the
balance between multiple factors. In particular, the pace of
development of mutations and the pace of development of
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immune response to cancer. Therefore, one can expect that
prognosis of survival based on CNV should be less precise
than one based on gene expression - simply because there
are more factors modifying the response to CNV than to
gene expression. Having said that, we don’t feel competent
enough pursue this line of reasoning.
On the other hand we believe, that rigorous methods for

identification of informative features involved in synergis-
tic interactions can be useful for integration of variables
from different sources.
Reviewer: It will be worth to see the authors comment

on comparison of models based on statistics, on machine
learning and informatics. I think that a sort of combining
such approaches may have good influence on the results
for such studies. Aside with all those remarks and criti-
cisms, I would dare to recommend the submitted material
to be published after a careful revision.
Authors’ response: We think that meaningful comments

could be made if better results were achieved. In such a
case, wider comparison of different approaches could be
made. We agree with the reviewer that, in principle, this
could be an interesting analysis to do – in particular if
some synergies were found. Unfortunately, it seems that
very little synergy can be gained from combining CNV and
gene expression and this picture is unlikely to change when
other methods are used. Hence, we do not believe that such
an analysis would be worthwhile for the current study.
Therefore, we would rather prefer not to venture into fur-
ther reaching comparisons. This would require significant
effort to perform similar analysis with different set of tools
and then comparison of results achieved. Otherwise such
comparisons would be purely speculative.
Reviewer: Minor issues
1. The language of the paper is a bit heavy and obscure.
Authors’ response: We have strived to improve the lan-

guage in the current submission.
2. There is dedicated to much space in a meticulous

explanation of the used approaches but not an explana-
tion for their use in this case study in particular. I would
recommend to make a sort of comparative explanatory
analysis of the used models with particular reasons to the
study.
Authors’ response: We have extended the “Meth-

ods” section to include some explanation why such choices
were made. Most answers to previous comments cover
that. We have also modified the first paragraphs of the
“Methods” section to stress the reasons behind the choices
made.
3. The abstract is written in a bit shy manner. There are

lot of sentences with “...slightly significant...”, “...slightly dif-
ferent...” The results should be presented as they shortly
discussing the reasons for such outcomes.
Authors’ response: We believe that abstract is not really

that shy since only marginal results were obtained for the

main goal of the study, namely discovering the synergy
between data from different experimental techniques for
better predictions of survival in neuroblastoma. On the
other hand, we were not shy when describing the main
strength of the study, namely the development of the robust
predictive methodology. We would prefer to stay with the
modest approach, risking being too shy rather than too
optimistic.
4. I would recommend also to reduce the length and

complexity of the sentences in the text. Authors’ response:
We have strived to improve the language in the current
submission, in particular we used shorter and simpler
sentences where possible.

Second round of reviews: Reviewer’s report 1: Lan Hu
Reviewer comments to Authors The authors have taken
great effort answering the reviewers’ comments and rec-
ommendations. As a result, the paper is much improved
from the previous version.
Minor issues:
1. It would be helpful to include the stats of survival

status of patients in each of 498 and 145 datasets.
Authors’ response:We have added required information

at the end of subsection Data.
2. page 5, line 50:
two different Affymetrix matrices -> two different

Affymetrix platforms.
Authors’ response: We corrected nomenclature in the

requested manner.

Second round of reviews: Reviewer’s report 2: Dimitar
Vassilev
Reviewer comments to Authors I am satisfied with the
answers. Definitely there remain some open questions in
the choice and validation of the machine learning meth-
ods used in the study - but this needs larger comparative
approach and very possibly larger dataset.
Authors’ response: We agree with the reviewer that a

large comparative study for comparing efficiency of differ-
ent modelling approaches would be worthwhile.
Minor issues:
I accept the corrections made by the authors.
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aCGH: Array comparative genomic hybridization; CAMDA: Critical assessment
of massive data analysis; CNV: Copy number variation; FS: Feature selection; G:
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