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Abstract

Background: Many methods have been developed for metagenomic sequence classification, and most of them
depend heavily on genome sequences of the known organisms. A large portion of sequencing sequences may be
classified as unknown, which greatly impairs our understanding of the whole sample.

Result: Here we present MetaBinG2, a fast method for metagenomic sequence classification, especially for samples
with a large number of unknown organisms. MetaBinG2 is based on sequence composition, and uses GPUs to accelerate
its speed. A million 100 bp Illumina sequences can be classified in about 1 min on a computer with one GPU card. We
evaluated MetaBinG2 by comparing it to multiple popular existing methods. We then applied MetaBinG2 to the dataset
of MetaSUB Inter-City Challenge provided by CAMDA data analysis contest and compared community composition
structures for environmental samples from different public places across cities.

Conclusion: Compared to existing methods, MetaBinG2 is fast and accurate, especially for those samples with significant
proportions of unknown organisms.

Reviewers: This article was reviewed by Drs. Eran Elhaik, Nicolas Rascovan, and Serghei Mangul.
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Background
With the greatest biodiversity and huge quantity, microbes
occupy a very important position in the ecosystem. How-
ever, most of them have not been studied through trad-
itional separate-and-culture methods [1], since only a
small fraction of them are culturable. Metagenomics pro-
vides a culture-independent method to study an environ-
ment by sequencing the genetic material directly. With
the progress of sequencing technologies, some environ-
ments such as gut microbiomes have been studied well.
However, in most environments, most microbes are un-
known and were ignored in the current studies [2]. Meta-
genomics analysis of unknown environments may give us

brand new view points and tremendous genetic resources.
For example, health and disease can be determined by the
diversity patterns of the human microbiomes [3]. The mi-
crobial diversity in marine can provide an accurate index
of environmental health and ecosystem sustainability [4].
The study of microbial communities with high diversities
in soil is helpful to understand the important process re-
lated with the plant growth and cycling of carbon [5].
Metagenome sequence analysis can help for all these di-
verse research areas.
Sequence classification is a crucial step in metagenome

sequence analysis. The methods for metagenome se-
quence classification can be divided into two categories:
(1) alignment-based methods and (2) composition-based
methods. Alignment-based methods can be further di-
vided into seed-and-extend alignment-based method,
mapping-based methods and kmer-alignment based
methods. Seed-and-extend alignment-based methods
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like BLAST [6] and DIAMOND [7], which classify a
query sequence by finding the best alignment to a big
database of reference genomes through sequence align-
ment methods. DIAMOND uses double indexing which
determines the list of all seeds and their locations in both
the query and reference database. Mapping-based methods
are faster than seed-and-extend alignment-based methods
because of the benefits from the mapping algorithm, while
their sensitivity is lower in general, like MiCoP [8].
Kmer-alignment-based methods, like KRAKEN [9] and
CLARK [10], have advantages both on speed and precision
by using exact-match of kmers, rather than inexact
alignment of sequences, to the reference database. For
example, KRAKEN is about 900 times faster than
Megablast (BLAST-based system) [9]. However, for all
these alignment-based methods, their accuracy drops
dramatically when dealing with samples with many un-
known organisms. By contrast, composition-based methods,
such as Phymm [11], NBC [12] and metaCV [13] depend
less on reference genomes. Phymm uses interpolated Mar-
kov models (IMM) to characterize variable-length oligonu-
cleotides for phylogenetic grouping. NBC uses the Naive
Bayes method to classify sequences to their best taxonomic
group. MetaCV uses k-mer frequency vectors of translated
peptide sequences instead of the nucleotide sequences
against the reference protein sequence database to deter-
mine the source organism. In summary, compared with
alignment-based methods, composition-based methods have
low dependence on the reference genomes, but at the same
time, their accuracy is lower in general.
GPUs (Graphic processing units) were originally de-

signed to accelerate graphic display but can be utilized for
some scientific computing. GPUs have advantages on nu-
merical calculation benefited from the hundreds of cores.
With the success of CUDA, a parallel programming model
designed for GPU [14], many applications, including some
in bioinformatics, have obtained considerable acceleration
by adapting GPUs [15]. In this paper, we present a
composition-based method - MetaBinG2, together with
its GPU version, for metagenome sequence classification
and a toolkit named MetaBinG2kit to visualize the ana-
lysis results. The performance of MetaBinG2 were tested
on simulated and mock datasets. In the end, MetaBinG2
was applied to the dataset of MetaSUB Inter-City Chal-
lenge provided by CAMDA data analysis contest [16] and
the community composition structures for environmental
samples from different public places across three cities
have been analyzed and compared.

Methods
Two reference datasets and four query datasets were
prepared to evaluate the performance. The two reference
datasets were denoted as reference dataset A and B. Ref-
erence dataset A and multiple reference databases de-
rived from it were designed for performance evaluation.
Dataset B was prepared for real-world data analysis
for large-scale metagenome sequencing projects, like
MetaSUB.
The four query datasets were: i.) Simulated dataset, ii.)

Mock dataset, iii.) Cow Rumen dataset, and iv.) Meta-
SUB dataset. The first two datasets were used to evaluate
the methods in terms of classification accuracy, and the
running speed. Cow Rumen dataset was used to show
the results of several methods when they were applied to
classify real-world samples with many unknown organ-
isms. MetaSUB dataset was used to test MetaBinG2’s ap-
plication ability for large-scale metagenome sequencing
projects.

Reference dataset A
Reference dataset A contains 2606 microbe genomes and
the genome numbers at various taxonomy level are shown
in Table 1. They were downloaded from NCBI website (ftp://
ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/
, updated on June 2, 2015). Multiple databases were gener-
ated from this reference dataset A to evaluate CLARK, DIA-
MOND, metaCV, MetaBinG, and MetaBinG2. All reference
databases in our analysis except for MetaSUB analysis were
generated according to Reference dataset A.

Reference dataset B
Reference dataset B is a comprehensive reference dataset.
It contains 7675 genomes, including 7459 from bacteria,
63 from eukaryotes, 153 from Archaea. These genomes
were downloaded from NCBI genome database (ftp://
ftp.ncbi.nlm.nih.gov/genomes/, updated on Mar 27, 2017).
The bacterial genome numbers at various taxonomy levels
are shown in Table 1. Reference dataset A is a subset of
reference dataset B. A comprehensive database was gener-
ated from this reference dataset B for MetaBinG2 on the
MetaSUB dataset.

Simulated datasets
Simulated metagenome sequencing datasets were created as
inputs. The community composition structure information
of the simulated metagenome sequencing data comes from
a published work [17]. We used NeSSM [18] to simulate

Table 1 The details about genomes included in the reference datasets

Phylum Class Order Family Genus Species Genome

Reference dataset A 38 63 147 265 690 1429 2606

Reference dataset B 43 87 188 357 958 2733 7675
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100 million single sequences with sequence length of 100 bp
and 250 bp according to the community composition struc-
ture (Additional file 1: Figure S1).

Mock dataset
Another way to evaluate metagenomics analysis methods
is using a mock dataset, which is generated by sequen-
cing a mock community (a mixture of microbes with
predefined proportions). In terms of similarity to the
real-world data, a mock data is between simulation data
and real-world metagenome sequencing data. We down-
loaded a mock dataset from HMP Microbiome Mock
Community (HMMC, SRA run id: SRR072232). In this
mock dataset, not all species are with the same propor-
tion. Some species are dominant in this mock dataset
(see details in Additional file 1: Table S1).

Cow rumen dataset
We chose a real-world dataset which was generated
from the cow rumen [19] (SRA runid: SRX034809). The
sample was sequenced by Illumina GAIIx with sequence
length of 125 bps. The total number of sequences is
about 140 million.

MetaSUB dataset
The MetaSUB dataset is also known as CAMDA 2017
conference - challenge two. This dataset was generated
from metagenomes sampled from subway stations of
three cities: Boston, New York (NY), and Sacramento.
Different locations of the subway stations were sam-
pled. MetaSUB data is a real-world large-scale metagen-
ome sequencing data. The size of the sequencing data
in fastq format is about 3.6 TB. Considering the high
complexity of this dataset, to better analyze the data, we
used a much more comprehensive reference database B,
including a bigger number of prokaryotic genomes and
some additional eukaryotic genomes (see beginning of the
Methods section for more details).

Method evaluation
We evaluated MetaBinG2 in three aspects: (1) classifica-
tion accuracy, (2) community composition structure pre-
diction ability and (3) running speed. This was done by
comparing MetaBinG2 to several existing methods:
alignment-based method – CLARK and DIAMOND,
composition-based method – metaCV, and the first ver-
sion of MetaBinG2 – MetaBinG.

(1) Classification accuracy

We used clade exclusion experiments with simulated
dataset and reference dataset A to evaluate the classifica-
tion accuracy. Clade exclusion experiments were used to
evaluate methods’ ability to classify the samples with

different degree of unknown organisms. We generated sev-
eral reference databases with different clade exclusion by
modifying the reference dataset A according to the known
community composition structure of simulated query data-
set to mimic metagenome analysis with unknown organ-
isms. For example, to create a scenario with unknown
organisms at order taxonomy level, we generated ‘Order_-
excluded’ reference database by excluding from the refer-
ence dataset A those genomes with the same order as
those in the query dataset. More details of this process are
illustrated in Fig. 1. As a result, we got six reference data-
bases for simulated query dataset: (1) ‘No_exclusion’ refer-
ence database which is the same as the original reference
database A (with 2606 genomes); (2) ‘Species_excluded’
database (with 2557 genomes); (3) ‘Genus_excluded’ data-
base (with 2436 genomes), (4) ‘Family_excluded’ database
(with 2153 genomes), (5) ‘Order_excluded’ database (with
1965 genomes), and (6) ‘Class_excluded’ database (with
550 genomes). Databases (2) - (6) stand for different de-
grees of unknown organisms in a sample.
We used several accuracy measurements for the method

evaluation. ‘TP’ represents the number of sequences that
their predicted taxonomies were the same as their true tax-
onomies. ‘UN’ represents the number of unclassified se-
quences. ‘ALL’ represents the total number of sequences. We
calculated sensitivity =TP/ALL, precision =TP/(ALL-UN),
and accuracy = (sensitivity + precision)/2.

(2) Community composition structure prediction ability

We used simulated dataset and mock dataset with ref-
erence dataset A to compare community composition
structure prediction accuracy for several metagenome
sequence classification tools. The consistency between a
predicted community composition structure and the ex-
pected community composition structure was measured
by cosine distances at different taxonomy levels.
We also calculated the over-prediction rates at differ-

ent taxonomy levels. The community composition struc-
tures were known for simulated datasets and mock
datasets. The over-prediction rate was computed as the
percentage of predicted taxonomy items not included in
the expected taxonomy items, i.e. the number of pre-
dicted taxonomy items not included in the expected
composition structure divided by the total number of
predicted taxonomy items.
We calculated Shannon index to reflect the commu-

nity diversity of each sample in the analysis of Meta-
SUB dataset. The formula for Shannon index is
described as follows.

H ¼ −
XN
i¼0

pilnpi ð1Þ
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(3) Running speed and memory requirement

Since the tools used for comparison are fast, we tested
all of them in one machine to compare their speed.

Method of MetaBinG2

(1) Building reference database

For genomes in the reference dataset, MetaBinG2 con-
verts a complete genome sequence into a state-transition
probability vector of the kth-order Markov model. A state
in this Markov model is defined as a sequence of length k,
and each state can transfer to four states, so that there
are 4(k + 1) transition probabilities. The transition probabil-
ities from a state m to a state n of the genome i is calcu-
lated as following:

KMMi;mn ¼ PiðOnjOmÞ ¼ FiðOnjOmÞ
FiðOmÞ ð2Þ

Where Omand Onare oligonucleotides of length k with
k − 1 bases overlapped, Fi(Om) stands for the number of
state m in genome i, Fi(On|Om) stands for the number
of state m followed by state n in genome i, and Pi(On|
Om) represents the transition probability from the Om to
the On of the genome i.

(2) Calculating the similarity scores between a short
sequence and the reference genomes

We designed MetaBinG2 based on an assumption that
a query sequence is more likely from the organism with
a larger proportion when the similarity scores of a query
sequence to several organisms are similar. The similarity
score between a short sequence with length l and a gen-
ome i can be measured by a score Si as following:

Si ¼ −
Xl−k−1
j¼0

ln pi Ojþ1

��Oj
� �� � !

� 1þ ωið Þ ð3Þ

where Oj and Oj + 1 are oligonucleotides of length k; pi(Oj

+ 1|Oj) represents the transition probability from the Oj

to the Oj + 1 of the genome i; ωi stands for the weight of
genome i which is calculated according to the number
of sequences assigned to genome i. Here, k is set to be 5
because MetaBinG got a good performance with bal-
anced accuracy and speed when k is 5 [20]. The similar-
ity scores between the query sequences and reference
genomes were computed through a matrix multiplica-
tion, which is achieved by using CUBLAS library [21] on
GPU. The improvement of algorithm is reflected with
the value of ωi. Each genome will be assigned with an
initial value (an evenly distributed probability) at the
beginning. These values will be updated when a classifi-
cation is completed and as the prior knowledge added in
the next classification. We obtained the final classifica-
tion result when this genome weights vector ω is leveled
off. At the end, the genome with the best similarity score
will be assigned to each query sequence, and its tax-
onomy information will be output.
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Fig. 1 Schematic diagram of clade exclusion experiment. a is a diagram of the community composition structure in a simulated query dataset.
All genomes in the simulated query dataset are from the two orders represented by the nodes colored with ‘green’ and ‘yellow’. b is a diagram
of creating ‘Order_excluded’ reference database. All nodes in (b) stands for the original reference dataset A. Nodes colored with ‘green’ and
‘yellow’ are corresponding to the ones in (a) with same colors. The genomes under the nodes which are covered by the light blue part are
excluded from reference dataset A to construct ‘Order_excluded’ database. In this figure, ‘+’ means that the inferior details are condensed, and ‘-’
means these details are expanded
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MetaBinG2 with GPU classification system is shown in
Fig. 2. The similarity scores between the query sequences
and reference genomes were computed in GPUs. After the
scores were computed, the source genome with minimum
score was assigned to a query sequence in CPUs. In prac-
tice, query sequences are loaded into GPUs in batches. By
default, each batch have 1000 query sequences.

Development environment
MetaBinG2 was developed with CUBLAS library (CUDA
7.5) and pthread library on a Linux machine with 16
CPU cores (Intel (R) Xeon (R) CPU E5-2680 v3 @
2.50GHz) and two Tesla K80 GPU cards (only one GPU
was used for all MetaBinG and MetaBinG2). All other
tools were tested on the same machine.

Results
We have implemented MetaBinG2 program for metage-
nomic sequence classification. Its performance was evaluated
on simulated sequencing datasets and a mock dataset. The
scenarios for samples with unknown organisms were simu-
lated by clade exclusion experiments (Fig. 1). MetaBinG2
was then applied to analyze two real-world datasets: Cow
Rumen dataset and MetaSUB dataset.

Clade exclusion experiments
For ‘No_exclusion’ experiments, all genomes in a sample
have at least one closely related genome in the reference
database. CLARK had the best accuracy on all taxonomy
levels (Fig. 3a). MetaBinG2 had similar accuracy as
CLARK and DIAMOND on phylum level, and showed
notable improvement compared to MetaBinG. While at
species level, MetaBinG2 was not as good as CLARK
and DIAMOND (Fig. 3a). However, when there were un-
known genomes, MetaBinG2 performed much better
than all other methods (Fig. 3c-d). In addition, the per-
formance of MetaBinG2 was more robust than existing
methods for samples with various degrees of unknown
genomes and was better as the length of sequencing se-
quences increases. For example, the evaluation at
phylum level was shown in Fig. 3e-f, and results at the
other taxonomy level were shown in Additional file 1:
Figure S2.

Consistency between the predicted community
composition structure and the expected ones
We evaluated the consistency between community com-
position structure predicted by the selected tools and
the true composition structures of simulated dataset or
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Fig. 2 The system diagram of MetaBinG2. MetaBinG2 first loads the reference database and copy it into GPUs as a reference matrix. Next, the
short query sequences are converted into k-mer vectors in CPUs, and vectors will be loaded to GPUs as query matrix. Then, the query matrix will
be multiplied to the reference matrix in GPUs by CUDA CUBLAS functions and adjusted with the weights, with a similarity score matrix as the
output. The source genomes with minimum similarity scores will be selected. The weights are updated according to the latest proportions after
all sequences are classified. If the BC distances of the weights before and after the update are less than the cutoff, the final similarity scores
together with the annotated taxonomy information will be output
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mock dataset. The performance of MetaBinG2 is the
best based on the consistency between the predicted
community composition structure and the expected
ones (Fig. 4a-b). For the mock dataset, its gold standard
community composition structure was estimated accord-
ing to its gDNA content (Additional file 1: Table S1).
Similar analysis has been done on simulated dataset
(with sequence length of 100 bp) with ‘Species_excluded’
reference database and ‘Genus_excluded’ database (Add-
itional file 1: Figure S3). The over-prediction rates of
these tools with simulated dataset and mock dataset
were shown in Fig. 4c-d. The source genome of each se-
quence in the mock dataset was unknown, but the mock
dataset had known composition structure so that we
could evaluate the tools on this dataset through
over-prediction rates. The over-prediction rate is the

ratio of predicted taxonomy items not included in the
expected composition structure and all predicted results
without ‘unclassified part’. This rate reflected how many
taxa predicted were not included in the list of taxa used
for test dataset generation. MetaBinG was prone to pre-
dict more wrong taxa results with over 50% on genus
level. The performance of MetaBinG2 was much better
than MetaBinG and similar to DIAMOND.

Speed and memory requirement
We applied these selected tools to a simulated dataset
with 100 million sequences of length 100 bp against the
reference database A (2,606 genomes) on a same ma-
chine (see details in methods). The time was measured
in two parts, the time for loading database and the time
for classifying. Results showed that CLARK was the
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Fig. 3 Accuracy evaluation with simulated datasets against reference databases with/without clade exclusion. Tested scenarios include: a, b no
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fastest, while MetaBinG2 was comparable with DIA-
MOND and slightly better than metaCV and MetaBinG in
terms of speed (Table 2). In addition, the memory re-
quired for CLARK and metaCV was more than 50GB, for
DIAMOND was 23GB but for MetaBinG and MetaBinG2
was less than 1GB. Therefore, MetaBinG2 has a great po-
tential to include many more genomes in the reference
database than the other programs.

Applying MetaBinG2 to cow rumen dataset
The dataset of cow rumen was a real-world environmental
metagenome and contained a large proportion of unknown
organisms. Previous researchers produced 15 near-complete
draft genomes by an assembly method and assigned them
into four orders, Bacteroidales, Clostridiales, Myxococcales,
and Spiochaetales [19]. The corresponding classes are Bac-
teroidia, Clostridia, Deltaproteobacteria, and Spirochaetia

and the phyla are Bacteroidetes, Firmicutes, Proteobacteria,
and Spirochaetes.
We ran CLARK, DIAMOND, metaCV and MetaBinG2

on this cow rumen dataset with reference dataset A as the
reference database. The four orders were all included in
MetaBinG2’s prediction results (Additional file 1: Figure S4).
However, alignment-based methods, like CLARK and DIA-
MOND, had a large part of unclassified results labeled as
‘NA’ when they were applied on a sample which has many
unknown organisms such as cow rumen dataset. CLARK
could not classify ~ 60% sequences of this dataset and DIA-
MOND could not classify ~ 90% (Additional file 1: Figure
S4). This showed the performance of each tool when they
were applied on the sample with many unknown organisms.
MetaBinG2 is helpful to learn the community composition
structure roughly in a short time when we have little know-
ledge about an environment.
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composition structure and the true community composition structure. Y-axis stands for consistency level reflected by cosine value. In a the query
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structure. Here, CLARK and DIAMOND are alignment-based methods and the others are composition-based methods

Table 2 The speed and memory requirement

CLARK DIAMOND metaCV MetaBinG MetaBinG2

Time (second) Loading 85 301 722 6 6

Classifying 375 5240 10,429 7223 5052

Memory (Byte) >50G 23G >50G 230 M 510 M

CPU usage 1600 1556 1600 106.2 356.2

CPU time (second) 42 1275 2818 117 261

The four tools were tested on the simulated dataset with 100 million sequences with length 100 bp against the reference database A
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Applying MetaBinG2 to MetaSUB dataset
We used MetaBinG2 to classify the whole MetaSUB data-
set with reference dataset B including eukaryotic genomes
described before and we were able to finish the analysis
within 3 days using 38 computational nodes (in a high per-
formance computer cluster). The classification results of
MetaSUB dataset were listed in Additional files 2, 3 and 4.
MetaSUB includes metagenomic samples from three

cities. Relevant information about these samples includ-
ing the number of samples for each city, average number
of sequences per city and standard deviation was de-
scribed in Additional file 1: Table S2.
We compared the community composition structure

among three cities at phylum level predicted by MetaB-
inG2. Average proportions of phyla in each city were
shown in Fig. 5a, and for each phylum (> 1% abun-
dance), the overall percentage of samples containing it
was shown in Fig. 5b. Combination of these two aspects
showed the importance of one phylum. For example, if a
phylum’s average proportion among samples was high
and it also presented in most of samples, it meant that
this phylum is predominant. The community diversity of
each sample represented by Shannon Index was shown
in Fig. 5c. The top 6 phyla of the average proportion in

Sacramento were Streptophyta (~ 30%), Actinobacteria
(~ 20%), Chordata (~ 10%), Ascomycota (~ 10%), Api-
complexa (~ 10%) and Bacillariophyta (~ 10%) (Fig. 5a).
The average proportion of Streptophyta in Sacramento was
higher than the other two cities (Fig. 5a). Over 80% sam-
ples in Sacramento contained these top 6 phyla (Fig. 5b).
We also found that there was no significant difference
among samples in Sacramento on phylum composition by
Kruskal-Wallis test. Average proportion of each phylum
from the 117 amplicon sequencing samples were shown in
Additional file 1: Figure S5. Chordata and Actinobacteria
in Boston samples (WGS) took the major proportions (Fig.
5a). Proteobacteria and Actinobacteria in Boston samples
(amplicon) took the major proportions (Additional file 1:
Figure S5). Actinobacteria was predominant in all these
141 samples of Boston city. In the same way, we found
Proteobacteria was the predominant phylum in New York
city’s samples (Fig. 5a-b). The phyla’s composition of sam-
ples among three cities was very different (Fig. 5a-b). Be-
sides various predominant phyla of three cities, we
calculated the Shannon Index for each sample and com-
pare the difference of community diversity among three
cities by Kruskal-Wallis test and Pairwise test with Bonfer-
roni method. We found that the community diversity of
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New York was significantly different from the other two
cities (p-value< 0.0001).
Furthermore, we found the community diversity were

significantly different between samples labeled with
‘aquatic’ and ‘city’ in New York city (p-value< 0.0001)
(Fig. 6). The former samples were sampled from canal,
and the latter samples were sampled from parks or sub-
way stations. The community diversity of samples be-
tween subway stations and parks have not significant
difference. A significant relationship between commu-
nity diversity and humidity was found in Boston samples
(amplicon) (p-value< 0.01 with Kruskal-Wallis test). Es-
pecially for samples under 56% humidity, both material
type and surface type were found to be related to the
community diversity (Additional file 1: Figure S7). Com-
munity diversity of samples from seat or seat back with
material of polyester is significantly higher than from
other places with other material (p-value< 0.0001 Pair-
wise test) (Additional file 1: Figure S7).
At last, the relationship between the proportion of each

phylum in one sample and the environmental factors for
each city is estimated by p-value with Kruskal-Wallis test
(Additional file 1: Figure S8).

Discussion
MetaBinG2 has some advantages to classify a metagen-
ome sequence dataset when we have little knowledge
about it. The classification accuracy of current tools will
be improved as more reference genomes are sequenced.
There are less than 2 thousand microorganisms’ ge-
nomes were available on NCBI in 2012 [7], but today
the number of available microorganism genomes is more
than 7 thousand. However, the known microorganisms
will be only a tiny fraction of all microorganisms in
many environments for a long time. What’s more, the
growing number of known genomes require more mem-
ory resource. The memory requirement of MetaBinG2 is
much lower than other methods. Therefore, MetaBinG2
has a great potential to include many more genomes in
the reference database than the other programs.

To accelerate the computing speed, most methods have
been designed with parallelization. Both CLARK and
metaCV provide the multi-thread mode. The popularity of
multi-core CPU makes it possible to design CPU paralle-
lized program. MetaBinG obtains the 1500-fold speed up
compared to Phymm by using GPUs. MetaBinG2 added
CPU parallelization in addition to the GPU parallelization,
which made MetaBinG2 faster than MetaBinG.
For the MetaSUB data, MetaBinG2 was able to classify all

samples in a few days. The results were compared to the
previous study. For 24 Boston samples (WGS), Hsu et al.
used KneadDATA v0.3 pipeline to remove low-quality se-
quences and human host sequences [22]. The average se-
quence depth decreased from 16.7 × 106 to 9.8 × 106

sequences per sample. In samples after pretreatment, Acti-
nobacteria took the major proportion. In our analysis, the
result was similar: ~ 30% of sequences were identified as
Chordata and the top 2 phyla in terms of frequency were
Chordata and Actinobacteria (both with abundance over
30%) (Fig. 5a). The previous study [22] suggested that mi-
crobial communities on transit surfaces were correspond-
ing to local interactions with the human body and
environmental exposures. In our results, we found the
community diversity on seat and seat back was significantly
higher than the other places (grips and touchscreens) when
humidity is 56% (p-value< 0.0001 Pairwise test), and seat is
relatively higher than seat back (Additional file 1: Figure
S7). For New York samples, our results showed the similar
community composition on phylum level with a previous
study by Afshinnekoo et al. [23] (Additional file 1: Figure
S6). For New York samples and Boston samples, we found
humidity as a factor associated with the community diver-
sity (Fig. 6). The places with higher humidity may have
higher community diversity. For the Sacramento samples, it
was reasonable that Streptophyta, Actinobacteria, and
Chordata took the major proportions. These samples were
from light rail stations, and the sampling locations were on
the ground, where the surrounding vegetation is abundant.
Although there is not significant difference among samples,
some phyla’s changes among samples may give some useful
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Y-axis stands for the Shannon index calculated by the phyla distribution of a sample

Qiao et al. Biology Direct  (2018) 13:15 Page 9 of 21



information. For example, human traffic may be estimated
with the result of MetaBinG2 classification (Additional file 1:
Figure S9). Ticket machine in Archives Plaza (west) station
and platform railing in station 6 have more Chordata se-
quences. The human traffic in these two stations may be
higher than the other stations. In Archives Plaza (west) sta-
tion, ticket machine has much more sequences from Chord-
ata compared with bench and platform railing. It will be
interesting to analyze the relationship of factors like the wait-
ing time and the abundance of sequencing sequences in this
station. In 8th & Capitol station, platform railing has more
Chordata sequences, it may be caused by the surrounding fa-
cilities. For example, we found that the platform rail in this
station is very close to a traffic light. The Chordata might be
left by people waiting for traffic light. All this speculation
should be verified in further analysis, but it implied a reason-
able way to research and show the potential applications of
MetaBinG2.
In addition to analyzing unknown environmental sam-

ples, like soil, water etc., MetaBinG2 can also be applied
to compare two experiments or identify the changes be-
tween two experiments. For example, it can help identi-
fying factors impacting the repeatability of an
experiment or finding the source of contamination in a
laboratory.
Sequence classification methods compared in this paper

try to predict the source of each sequence, and these clas-
sification results can be subsequently used to analyze
community composition structure. For community com-
position structure comparison, other than using sequence
classification strategies, there are reference-free methods
directly focused on differences among samples [3] and
marker-based methods like MetaPhlAn2 [24] focused on
community structure reconstruction rather than each se-
quence classification. Researchers should choose appropri-
ate methods according to their own research goals.

Conclusions
MetaBinG2 provides an effective way for us to understand
the outline of the community composition structure of
samples with little knowledge, and it has the potential to
be applied to large-scale projects. With MetaBinG2, we
could obtain the community composition structure of
each sample in MetaSUB dataset within 3 days. The dom-
inant phyla and community complexity are different
among different cities. The community composition struc-
ture is significantly related with environmental factors like
humidity.

Reviewers’ comments
Reviewer’s report 1: Eran Elhaik, Ph.D.,University of
Sheffield, UK.
Reviewer comments: R1_S1, “In this manuscript, Qiao
et al. present MetaBinG2, an upgraded method to

MetaBinG, a method they published in an earlier paper.
The new method, under certain conditions, is purported
to be faster and more accurate than competing methods.
The authors compare the new methods with established
methods using two datasets. After establishing that the
method is indeed an improvement, they apply it to two
additional datasets (MetaSUB and Rumen microbiome).”
Author’s response: Thanks.
Reviewer comments: R1_1, “I appreciate the authors’

approach in first comparing their methods with compet-
ing methods and then applying it to two new datasets. I
agree that it is conceivable that the new method is in-
deed an improvement and can help progress knowledge
in the field.”
Author’s response: Thanks.
Reviewer comments: R1_2, “However, the paper is

very poorly written and is unpublishable. I understand
that English is not the authors’ first language and request
them to make the necessary efforts to improve the qual-
ity of the work. The problems were not only with the
language but also with the structure of the paper. I can-
not possibly comment on all the writing problems with
the manuscript.”
Author’s response: Thanks for reviewer’s points about

writing. We have revised the manuscript thoroughly and
rearrange the article structure.
Reviewer comments: R1_2, “In many places, I had

difficulties understanding what the authors want to say.

(1) The introduction is too long and read like results. It
should be half its current size and written like
proper introduction.

Author’s response: Thanks for pointing this out. We
have rewritten the introduction part (Background) it is
more concise and better organized.
Reviewer comments: R1_2 (2), “I do not understand

the term mock dataset. Is it not unreal?”
Author’s response: Mock dataset is between simulated

dataset and real sequenced dataset. In simulated data-
sets, the source of each sequence is known. But in real
dataset, it is not. A mock dataset was generated by se-
quencing (real sequencing, not simulation) of DNA ex-
tracted from a mixture of microbes with a predefined
proportion. Although the exact source of each sequence is
unknown, the candidate sources are known and, the ap-
proximate proportion of each microbe is also known. The
mock dataset we used here was downloaded from HMP
Mock Community. We have rewritten the introduction
about mock dataset and one sentence has been added to
introduce the mock data briefly as follows.
“Another way to evaluate metagenomics analysis

methods is using a mock dataset, which is generated by
sequencing a mock community (a mixture of microbes
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with predefined proportions). In terms of similarity to
the real-world data, a mock data is between simulation
data and real-world metagenome sequencing data.”
Reviewer comments: R1_2 (3), “For each query se-

quence, a genome in the reference database with the
minimum score is selected as its source genome” what
score? You never mentioned any score. How is it being
calculated?”
Author’s response: Sorry for the misunderstanding. To

avoid this misunderstanding, we have revised the manu-
script to use “similarity score” instead of “distance”,
“similarity”, or “score”. The similarity score represents
the similarity between a query sequence and a genome
in the reference database. It can be calculated by for-
mula (2).
Reviewer comments: R1_2 (4), “I don’t understand

how genomes with unknown organisms are being evalu-
ated. It seems reasonable to me that the sample should
go to its nearest relative.”
Author’s response: Sequences from unknown organisms

are predicted to their nearest relative genomes based on
the similarity scores.
Reviewer comments: R1_2 (5), “In summary, MetaB-

inG2 is helpful for researchers to learn about the overall
community composition structure roughly in a short
time when we have little knowledge about the environ-
ment.” “What does MetaBinG2 do when there is little
information? Is it valuable? It will no doubt give the
wrong results. Do we really need that? I am asking my-
self these questions to decide whether this manuscript is
publishable. The authors should address these questions
in the manuscript.”
Author’s response: Thanks for the suggestion. We have

revised the introduction and discussion session accord-
ingly to address these issues. In general, it will be a long
time that most sequencing reads are from unknown or-
ganisms for most environmental samples. However, a
rough understanding about these samples is the first step
to start before we get to know more.
Reviewer comments: R1_3, “The authors should com-

pare their MetaSUB results with those in the published
papers.”
Author’s response: Thanks for the suggestion. We

added comparison of the MetaSUB results with previous
published papers by Hsu et al. [22] and Afshinnekoo et
al. [23] in the discussion part.
Reviewer comments: R1_4, “Explain what GPUs are

whenever you use them.”
Author’s response: Thanks for pointing it out. We have

added a brief introduction about GPUs in Background part.
Reviewer comments: R1_5, “A million 100bp Illumina

sequences can be classified in about 1 min with one
GPU card. “ From this sentence it is unclear if you de-
veloped a tool for a computer or a sequencer.”

Author’s response: Thanks for pointing this out. We
have revised the sentence as “A million 100bp Illumina
sequences can be classified in about 1 min on a computer
with one GPU card.”
Reviewer comments: R1_6, “K should be in italic”.
Author’s response: Done.
Reviewer comments: R1_7, “The authors list the

known tool and explain about them, but in a different
order than the one they used to present them. Why?”
Author’s response: Thanks for pointing this out. Au-

thors have rearranged the order and the orders are now
consistent.
Reviewer comments: R1_8, “BLAST should always be

capitalized.”
Author’s response: Done.
Reviewer comments: R1_9, ““Moreover, most

alignment-based methods, especially the blast-based methods
are very slow. On the other hand, composition-based
methods do not have such a high dependence on the known
genomes, and most of them are fast” provide some numbers.
slow and fast are relative terms.”
Author’s response: Thanks for pointing it out. We have

rewritten the Background and modify the vague state-
ment as follows.
“Kmer-alignment-based methods, like KRAKEN [9]

and CLARK [10], have advantages both on speed and
precision by using of exact-match database queries of
kmers, rather than inexact alignment of sequences. For
example, KRAKEN is about 900 times faster than Mega-
blast (BLAST-based system) [9].”
“By contrast, composition-based methods, such as

Phymm [11], NBC [12] and metaCV [13] depend less on
reference genomes.”
“In summary, compared with alignment-based methods,

composition-based methods have low dependence on the
reference genomes, but at the same time, they are of low
accuracy in general.”
Reviewer comments: R1_10, “You use microorgan-

ism, organism, and sometimes species interchangeably.
They have different meaning.”
Author’s response: We have revised the manuscript to

make sure they were used in the right context with proper
meaning.
Reviewer comments: R1_11, “In the methods you first

talk about the 2 reference datasets and then continue to
give a lot of numerical details, which can be easily be
presented in a table and the whole explanation about
these datasets can be merged.”
Author’s response: Thanks for pointed it out. We

have merged the numerical details in the explan-
ation about the two reference datasets and used
Table 1 to show them.
Reviewer comments: R1_12, ““In this mock dataset,

some species are known dominant” what does it mean?”
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Author’s response: Sorry for the misunderstanding.
This sentence should be “In this mock dataset, some spe-
cies are dominant”. In the mock dataset we used in
method evaluation, some microbes are obviously more
frequent than others, i.e., dominant. We draw a diagram
to show the community composition structure of this
dataset and rewrote the explanation about mock dataset
to make the description clearer as follows (Fig. 7).
“Another way to evaluate metagenomics analysis methods

is using a mock dataset, which is generated by sequencing a
mock community (a mixture of microbes with predefined
proportions). In terms of similarity to the real-world data, a
mock data is between simulation data and real-world meta-
genome sequencing data. We downloaded a mock dataset
from HMP Microbiome Mock Community (HMMC, SRA
run id: SRR072232). In this mock dataset, not all species are
with the same proportions. Some species are dominant in
this mock dataset (see details in Additional file 1: Table S1).”
Reviewer comments: R1_13, ““metagenomes with un-

known organisms were simulated. For each simulated
query datasets, several reference databases were created
with all genomes at a specific taxonomy level a. ex-
cluded. “So, you didn’t simulate metagenome with un-
known organisms, you used the simulated datasets …
very confusing. Make it clearer and show a diagram.”
Author’s response: We used clade exclusion experiment

to mimic the scenario of unknown organisms in environ-
mental sample. We draw a schematic diagram to illus-
trate the clade exclusion experiment as Fig. 1. It explains
the clade exclusion experiment at order level.
Reviewer comments: R1_14, ““which is achieved by

cublas library on GPU.” Give reference. Couple of para-
graphs below it is written CUBLAS. Pick one and stick
with it.”
Author’s response: Thanks for pointing this out. A ref-

erence has been added and CUBLAS is used for all
places.”
Reviewer comments: R1_15, “Wrong color in 3c and

3d (blue? Purple?)”

Author’s response: Thank for pointing this out. The
same color scheme has been applied to all four subfigures
in Fig. 4 (the original Fig. 3) now.
Reviewer comments: R1_16, ““Opportunistic patho-

gens are widely distributed in the samples“ what do you
mean by “samples“? Do you mean between microorgan-
ism samples? you were just talking about cats, so this is
confusing.”
Author’s response: Thanks for pointing this out. Con-

sider all reviews’ comments, the results about pathogens
have been removed to avoid over interpolating of the se-
quencing data.

Reviewer’s report 2: Nicolas Rascovan, Ph.D.,
Mediterranee Infection Institute – Aix Marseille University,
Marseille, France.
Reviewer comments: R2_S1, “Overall, I think that
MetaBinG2 is a valuable method for the metagenomic
field, since it is fast, it has very low memory use and
seems to perform quite well on taxonomic classifica-
tions. The method is novel in the methodological ap-
proach that it uses (not dependent on alignments, uses
HMM, the scoring is based on sample composition, it
has low memory use, etc.) and I think that it will be well
welcomed by the scientific community.
Author’s response: Thanks.
Reviewer comments: R2_S2, My biggest concern is

the overall presentation of the manuscript, which has
major stylistic flaws, lack of clarity and insufficient de-
velopment in certain parts. Regarding the analyses, I
think that the most widely used methods in the field
(Kraken and Diamond-MEGAN) should be also com-
pared with MetaBinG2 and that the comparative ana-
lyses of real metagenomic data (the rumen cow) should
be improved. I found the results and conclusions from
MetaSUB data a bit superficial. The discussion should
be largely improved.”
Author’s response: We have extensively revised the

manuscript according to reviewers’ comments.

Fig. 7 Community composition structure of mock dataset
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DIAMOND has been added into method comparison
and the result interpolation for MetaSUB has been im-
proved. See more detailed information below.
Reviewer comments: R2_1, “The manuscript by Qiao

et al. presents a fast composition-based method to clas-
sify metagenomic reads taxonomically at different taxo-
nomic levels by using Markov models to estimate the
distance of a read to the organisms in a training set/
database. The algorithm calculates a score of a read to
all genomes in the database (assigning higher weights to
the genomes in higher proportion in the sample) and fi-
nally assigns the taxonomic classification based on the
genome with minimum score. The principal advantage
highlighted by the authors is that the algorithm performs
well in cases where the species (or higher taxa rank) of
origin of a certain read is not present in the database
(i.e., the method performs well “unknown organisms“).
In addition, the MetaBinG2 has a much lower memory
use than other methods. Although there are several tools
already available for taxonomic classification of metage-
nomics reads, this is still a great and unsolved problem
in metagenomics, and new tools using different ap-
proaches are always welcomed.”
Author’s response: Thanks.
Reviewer comments: R2_2, “Important note: It would

have been much easier to make the revision if line num-
bers were correctly placed.”
Author’s response: Thanks for pointing this out. Line

numbers are correctly placed now.
Reviewer comments: R2_3, “The English writing

should be improved (e.g., weird grammar and wording).
I would suggest to make the manuscript corrected by a
native or fluid English spoken person before publication.
For instance, I had hard times understanding many frag-
ments of the text, just because of the way they were
explained.”
Author’s response: Thanks for points about writing.

We have revised the manuscript extensively and re-
arrange the article structure as well.
Reviewer comments: R2_4, “Page 2: “Moreover, most

alignment-based methods, especially the blast-based
methods are very slow“. Well, Kraken and Clark are
not.”
Author’s response: Thanks for pointing this out. We have

rewritten the Background part and made the new descrip-
tion about categorization of sequence classification methods.
The alignment-based methods were further divided into (i)
Seed-and-extend algorithm-based methods like BLAST [6]
and DIAMOND; (ii) Mapping-based methods, like MiCop;
and (iii) Kmer-alignment-based methods, like Kraken and
CLARK. Seed-and-extension alignment-based methods
were slow in general while, mapping-based methods
and Kmer-alignment-based methods were much faster.
The description has been revised accordingly.

Reviewer comments: R2_5, “Page 3, Lines 5-8: I think
that it would be good to give a better explanation of the
hypothesis underlying the MetaBinG2 method. Specifically,
how does the method know a priori, which are the most
abundant organisms in the samples when assigning weights?”
Author’s response: Thanks for pointing it out. The de-

tailed description about the hypothesis underlying
MetaBinG2 is rewritten in Methods part as follows.
“We designed MetaBinG2 based on an assumption

that a query sequence is more likely from the organism
with a larger proportion when the similarity scores of a
query sequence to several organisms are similar.”
“The improvement of algorithm is reflected with the

value of ωi. Each genome will be assigned with an initial
value (an evenly distributed probability) at the begin-
ning. These values will be updated when a classification
is completed and as the prior knowledge added in the
next classification. We obtained the final classification
result when this genome weights vector ω is leveled off.”
Reviewer comments: R2_6, “In the formula for build-

ing the database, the F is not defined.”
Author’s response: Sorry for the misunderstanding. We

have added the definition for Fs. The corresponding part
was rewritten as follows.
“The transition probabilities from a state m to a state

n of the genome i is calculated as following:

KMMi;mn ¼ PiðOnjOmÞ ¼ FiðOnjOmÞ
FiðOmÞ ð4Þ

Where Omand Onare oligonucleotides of length k with
k − 1 bases overlapped, Fi(Om) stands for the number of
state m in genome i, Fi(On) stands for the number of
state n.
in genome i, Fi(Om|On) stands for the number of

state m followed by state n in genome i, and Pi(Om|On)
represents the transition probability from the Om to the
On of the genome i.”
Reviewer comments: R2_7, “Methods: “The similarity

was computed as the correlation between two compos-
ition structures“. Which statistical method was used for
this and how was this calculated? “The consistency will
be computed at each taxonomy level“: Was computed?
All statistical methods used and in which cases were ap-
plied should be mentioned in the methods section.”
Author’s response: Thanks for pointing it out. The de-

scription about comparison method has been added in
manuscript as follows.
“We used simulated dataset and mock dataset with

reference dataset A to compare community composition
structure prediction accuracy for several metagenome
sequence classification tools. The consistency between a
predicted community composition structure and the
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expected community composition structure was mea-
sured by cosine distances at different taxonomy levels.”
Reviewer comments: R2_8, “The k-size used in

MetaBinG2 and the reason for choosing this size should
be mentioned from the very beginning in the methods
section, not just at the last sentence of the page 9, when
the manuscript is almost over.”
Author’s response: Thanks for pointing it out. We have

rearranged the narrative order about this problem and
explain k-size setting in ‘Method of MetaBinG2’.
Reviewer comments: R2_9, “Legends for Figs. 2 and 3

should include the information of which methods are
composition-based and alignment-based.”
Author’s response: Thanks for pointing it out. We have

added this information in the legends of Figs. 3 and 4
(the original Figs. 2 and 3).
Reviewer comments: R2_10, “Since little matters the

strategy used in taxonomic classification of metagenomics
reads (i.e., composition-based or alignment-based) as long
as the method works, I think that the comparison of
MetaBinG2 to other methods, should also include some
of the most widely used alignment-based methods, such
as Kraken and Diamond-MEGAN. Even if MetaBinG2
does not outperform these methods, it would be interest-
ing to understand the reasons for this and which are the
limiting steps, so further methods can use this information
to build upon these findings.”
Author’s response: Thanks for the suggestions for method

comparison. We have added DIAMOND in the comparison
(Figs. 3 and 4, and Additional file 1: Figure S2-4). However,
KRAKEN was left out due to two reasons: 1) it uses similar
strategy as CLARK, which performs better or at least com-
parable to KRAKEN; and 2) KRAKEN needs very large size
of memory. Ounit et al. pointed out that when CLARK re-
quires 40-42 GB memory, KRAKEN needs 120-140GB
memory for classification. For our reference dataset A,
CLARK requires more than 50 GB memory, which indi-
cates that KRAKEN will need more than 140 GB.
Compared to MetaBinG2, DIAMOND showed better

performance on over-prediction and comparable speed.
Other conclusions remain unchanged.
Reviewer comments: R2_10, “Page 7, Lines 7,8: From

Fig. 2e, f, is clear that the method performs well at pre-
dicting the phylum level of reads when the genomes of
the species, genus, family or order that are present in
the query dataset were excluded from the reference
database. I think that the sentence “In addition, the per-
formance of … ” should be better explained, for instance
by clearly stating that authors are particularly referring
to phylum level classification. Also, I think that it would
be nice if they could somehow show how is the perform-
ance at other taxonomic ranks, when different clade ex-
clusion levels are used (e.g., how good is the classification
at class or order level, when species or genus are

excluded?). My point is that phylum level is not the only
rank that matters, and it would be good to know at which
levels (of clade exclusion AND taxonomic level classifica-
tion) the performance of the method drops.”
Author’s response: Thanks for the suggestion. We

have added the evaluation of other taxonomy levels in
Additional file 1: Figure S2.
Reviewer comments: R2_11, “Fig. 3a-b: I understand

that community structures were estimated without clade
exclusion. Do these correlations change in the different
methods if clades are excluded? (e.g., excluding species
and genera?)”
Author’s response: Thanks for pointing it out. We

added these results in Additional file 1: Figure S3.
Reviewer comments: R2_12, “Fig. 3 legend: “(d) The

speed of four tools … “I don’t see this plot anywhere.
There are two different references to (d) and it does not
show any speed measurement. In think that authors forgot
to add a plot here (and this is actually showed in Table 1).”
Author’s response: Thanks for pointing it out. It was a

mistake and we have corrected it. All speed data were
shown in Table 2.
Reviewer comments: R2_13, “Fig. 3c-d and results

about this (Page 7, Lines 14-18): It is not clear at all the
explanation about what Fig. 3c-d is showing. The au-
thors should better develop this. Moreover, they should
also better explain what does the “over-prediction rates”
metric shows. What I understand from the way is writ-
ten now (“The over-prediction rate was computed as the
percentage of predicted taxonomy items not included in
the expected composition structure”) is that this metric
somehow estimates miss-assignments, since it will calcu-
late how many taxa were predicted that were not included
in the initial dataset of origin. Looks like MetaBinG (first
version) is pretty bad, with 75-80% of miss-assignments at
species level, and MetaBinG2 between 0 and 25% between
phylum and species (best performing method). All these
results should be properly described in the text.”
Author’s response: Thanks for the helpful advice. We

have redefined the over-prediction rate as follows.
“The over-prediction rate was computed as the per-

centage of predicted taxonomy items not included in the
expected taxonomy items, i.e. the number of predicted
taxonomy items not included in the expected compos-
ition structure divided by the total number of predicted
taxonomy items.”
We have also adjusted the figures to reflect how many

taxa were predicted that were not included in the initial
dataset of origin of each method. The original Fig. 3 has
been moved to Fig. 4. The Figure description has been re-
vised as follows.
“The over-prediction rates of the four tools with the simu-

lated dataset and mock dataset were shown in Fig. 4c-d. The
original genome of each read in the mock dataset is
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unknown, but the mock dataset has the known com-
position structure so that we can evaluate these tools’
performance on this dataset through over-prediction
rates. The over-prediction rate is the ratio of predicted
taxonomy items not included in the expected composition
structure and all predicted results without ‘unclassified
part’, which reflect how many taxa were predicted that
were not included in the initial dataset of origin. MetaB-
inG (first version) is prone to predict more wrong taxa re-
sults with over 50% on genus level. The performance of
MetaBinG2 is much better than MetaBinG (first version)
and like DIAMOND with between 0 and 15% between
phylum and genus.”
Reviewer comments: R2_14, “Results, “speed” section.

I think that the fact that the memory use of MetaBinG2
is significantly lower than in Clark and MetaCV should
be highlighted in the results section as well (not only in
the discussion), since it represents a major advantage of
the method.”
Author’s response: Thanks for the suggestion. We have

highlighted this by 1) adding Table 2 to show the mem-
ory requirements for all tools. We also described this in
the results part as follows.
“We applied these selected tools to a simulated dataset

with 100 million reads of length 100 bp against the refer-
ence database A (2,606 genomes) on the same machine
(see details in methods). The time was measured in two
parts, the time for loading database and the time for
classifying. Results showed that CLARK was the fastest,
while MetaBinG2 was comparable with DIAMOND and
slightly better than metaCV and MetaBinG in terms of
speed (Table 2). The memory required for CLARK and
metaCV was more than 50GB, for DIAMOND was
23GB but for MetaBinG and MetaBinG2 was less than
1GB. Therefore, MetaBinG2 has a great potential to in-
clude many more genomes in the reference database
than the other programs.”
Reviewer comments: R2_15, “Additional file 1: Table

S1: Only 4 orders were found in the whole rumen?”
Author’s response: Thanks for pointing it out. This de-

scription was misleading. Hess et al. [19], generated 446
genome bins, and 15 of them were estimated to be
near-complete draft genomes and were suggested to be
successfully assembled. These 15 draft genomes were then
assigned into four orders, Bacteroidales, Clostridiales,
Myxococcales, and Spiochaetales.”
Reviewer comments: R2_16, “Page 8: “We ran MetaB-

inG2, MetaCV and CLARK on this dataset”: the assem-
ble data or the single reads?? Based on Additional file 1:
Figure S2, it seems that the authors used single reads,
but this information was then compared to the taxo-
nomic composition inferred from the assemble data. I
think that these two datasets are not really comparable,
since the assembled data likely represents a small

fraction of the real diversity in the sample. Additional
file 1: Figure S2 actually shows how many more taxa are
observed in the sample (by the three methods) com-
pared to the assembled result. The limited taxonomic
representation in the assembled data is not really repre-
sentative of the metagenome diversity. I think I would
chose a clearer example to show the performance of
MetaBinG2 in “real datasets” (e.g., comparing to another
single read analysis and/or more complex communities
and using the same reference databases). I wonder which
would be the classification of the contigs/scaffolds in the
cited work from 2011, if they were reanalyzed with the
much newer Reference databases A and B (maybe cer-
tain contigs that were initially unclassified and not men-
tioned in the work would be now classified). In fact, in
this work from 2011, the authors simply used Blast
against NCBI-nr to classify contigs. Wouldn’t it be better
to instead of getting the taxonomic composition of the
rumen sample from the information reported in the art-
icle, to just re-calculate the proportions using the same
method (Blast) against the same databases (A and/or B)?
Moreover, I would suggest that a more accurate way to
do these analyses would be to get the contigs, taxonom-
ically classify contigs de novo, map the reads on the con-
tigs, estimate the abundance of the taxa in the contigs
dataset (using contig coverage, for instance) and classify
all the mapped reads with MetaBinG2 (and other
methods) to see whether single read analyses correlates
well with the information in the assembled data analysis.
This way reads and contigs data can be directly
compared.”
Author’s response: The cow rumen dataset was de-

scribed in methods part. The cow rumen dataset contains
reads instead of contigs. The description of this dataset is
as follows.
“Cow rumen dataset.
We chose a real-world dataset which was generated

from the cow rumen [19] (SRA runid: SRX034809). The
sample was sequenced by Illumina GAIIx with sequence
length of 125 bps. The total number of sequences is
about 140 million.”
Thanks for the suggestion about Additional file1: Figure

S4 (Figure S2 in original order). For read-world dataset, no
methods can give the absolute correct classification, even
using assemble method. The performance evaluation
should be based on the simulated dataset or mock dataset.
We use cow rumen dataset to show the result of each tool
when they were applied on a real-world dataset with many
unknown organisms. The original Fig. S2 was revised as
Additional file 1: Figure S4.
Reviewer comments: R2_17, “Analyses of MetaSUB

data: Chordata assigned reads most likely have a human ori-
gin. I would suggest to eliminate human reads from datasets
before performing the taxonomic analyses. Like this, samples
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will be more comparable at the microbial composition level.
If Figures a and b are both complementary and necessary,
then the particular results that each of them indicate should
be mentioned in the results section (a and b are referenced
together, so it seems that they are both redundant for the in-
formation authors wants to highlight from their analyses).”
Author’s response: Thanks for this suggestion. MetaB-

inG2 can classify not only microorganisms. The composi-
tions of samples in MetaSUB are complicated. Therefore,
we included some eukaryotic genomes such as animal and
plant genomes in reference dataset B which was used for
MetaSUB data analysis. MetaSUB dataset is used to test
whether MetaBinG2 has the potential to be used for a
large-scale project. So we did not eliminate human reads
in our analysis. Subfigure a and b showed different aspect
of the data. For the comparability, we divided Boston sam-
ples in two categories: 24 WGS sequencing samples and
117 amplicon sequencing samples. Only WGS sequencing
samples are used to compare with other cities.
We have revised the description of Fig. 5a-b to show

the differences between a and b, as follows.
“We compared the community composition structure

among three cities at phylum level predicted by MetaB-
inG2. Average proportions of phyla in each city were
shown in Fig. 5a, and for each phylum (> 1% abun-
dance), the overall percentage of samples containing it
was shown in Fig. 5b. Combination of these two aspects
could show the importance of one phylum. For example,
if a phylum’s average proportion among samples was
high and it also presented in most of samples, it meant
that this phylum is predominant.”
Reviewer comments: R2_18, “What is the difference

between Fig. 5 and S4? Wouldn’t it be better to just
present one of them?”
Author’s response: Thanks for pointing it out. We have

deleted Fig. S4 and adjusted Fig. 5 in Additional file
1 to Figure S8.
Reviewer comments: R2_19, “I don’t really see how

the Fig. 5, Additional file 1: FigureS3 and S4 show that
humidity and temperature were the main factors affect-
ing community composition.”
Author’s response: Thanks for pointing it out. In order to

analysis the relationship between factors and community
composition, we chose a more reasonable way as follows.
“Furthermore, we found the community diversity were

significantly different between samples labeled with
‘aquatic’ and ‘city’ in New York city (p-value< 0.0001)
(Fig. 6). The former samples were sampled from canal,
and the latter samples were from parks or subway sta-
tions. The community diversity of samples between sub-
way stations and parks have not significant difference. A
significant relationship between community diversity
and humidity was found in Boston samples (amplicon)
(p-value< 0.01 with Kruskal-Wallis test). Especially for

samples under 56% humidity, both material type and
surface type were found to be related to the community
diversity (Additional file 1: Figure S7). Community diversity
of samples from seat or seat back with material of polyester
is significantly higher than from other places with other
material (p-value< 0.0001 Pairwise test) (Additional file 1:
Figure S7).”
Reviewer comments: R2_20, “I would suggest to elim-

inate all the discussion about pathogens in the samples.
These results are not showed in the manuscript and
since this is a very sensitive information, it would require
an accurate and proper analysis and validation. Authors
should just focus in discussing the contributions of the
method and the results that are presented in the figures. The
discussion section should be, therefore, largely improved.”
Author’s response: Thanks for pointing it out. The dis-

cussion about the pathogens in the samples has been re-
moved according to reviewers’ recommendations.
Reviewer comments: R2_21, “Line 4, page 7: “While on

other levels, its performance is not as good as CLARK and
metaCV (Fig. 2a) “Is it? It does not seem to perform worse
than metaCV in Fig. 2a. Y-axes in the Figs. 2 and 3 should
have legends to understand what they show.”
Author’s response: Thanks for pointing it out. We have

rewrite this sentence and add the description about
Y-axes in Figs. 3and 4 (Fig. 2-3 in original order) legends
as follows.
“MetaBinG2 had similar accuracy with CLARK and

DIAMOND on phylum level, and showed obvious im-
provement compared to MetaBinG. While at species
level, MetaBinG2 was not as good as CLARK and DIA-
MOND (Fig. 3a).”
“Fig.3
Accuracy evaluation with simulated dataset against

reference databases with/without clade exclusion. Tested
scenarios include: (a-b) no exclusion, (c-d) species level
clade exclusion, and (e-f ) all level of clade exclusion. In
(a-b), all genomes in the query dataset were included in
the reference database and query sequence length is
100 bp (a) and 250 bp (b); In (c-d) all species in the
query dataset were excluded in the reference database.
The accuracy was measured on clade levels from species
to phylum (a-d). (e-f ) accuracy evaluation at phylum
level, and different levels of clades were excluded in the
reference database. In (a, c, e) the sequence length is 100 bp,
and in (b, d, f) the sequence length is 250 bp. Y-axis in all
Fig.3 stands for the accuracy (see details in Methods). Here,
CLARK and DIAMOND are alignment-based methods and
the others are composition-based methods.”
“Fig. 4
Evaluation for community composition structure pre-

diction ability of each tool. (a-b) The consistency be-
tween the predicted community composition structure
and the true community composition structure. Y-axis
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stands for consistency level reflected by cosine value. In
(a) the query dataset was simulated dataset, and in (b)
the query dataset was mock dataset. (c-d) Over-prediction
of each tools. The Y-axis stands for the proportion of
query sequences assigned to genomes outside of the true
source genomes (not include the unclassified part). In (c)
the dataset was simulated dataset, and in (d) the dataset
was mock dataset with known composition structure.
Here, CLARK and DIAMOND are alignment-based
methods and the others are composition-based methods.”
Reviewer comments: R2_22, “There are too many

stylistic issues in the manuscript to be listed. Authors
should consider getting assistance to write the final ver-
sion of the manuscript.”
Author’s response: Thanks for reviewer’s points. We have

revised the manuscript extensively and, as a result, the
quality of the manuscript has been improved significantly.

Reviewer’s report 3: Serghei Mangul, University of
California, Los Angeles, USA
Reviewer comments: R3_1, “The paper is missing back-
ground about the importance of accounting for un-
known organisms. How are the results from the
unknown organism used in the analysis? Why people
need to account for them, instead of just ignoring? This
is not imminently clear from the text. How the results
would be if we ignore the unknown organisms. The ex-
periment where the MetaBin2 is run in mode ‘not ac-
counting for unknown organism’ will be helpful. The
authors are suggested to cite the paper discussing the un-
known organisms: Mangul, Serghei, and David Koslicki.
“Reference-free comparison of microbial communities via
de Bruijn graphs.” Proceedings of the 7th ACM Inter-
national Conference on Bioinformatics, Computational
Biology, and Health Informatics. ACM, 2016.”
Author’s response: Thanks for pointing it out. We have

added the explanation about the importance of unknown
organisms in Background. The reference-free method is a
way to deal with samples with many unknown organ-
isms, but the difference among samples don’t have tax-
onomy information. The unknown query sequences can
be classified to their nearest relatives by MetaBinG2 in-
stead of being ignored. The reference-free method has
been mentioned in discussion part as follows.
“Sequence classification methods compared in this

paper try to predict the source of each sequence, and
these classification results can be subsequently used to
analyze community composition structure. For com-
munity composition structure comparison, other than
using sequence classification strategies, there are
reference-free methods directly focused on differences
among samples [3] and marker-based methods like
MetaPhlAn2 [24] focused on community structure re-
construction rather than each sequence classification.

Researchers should choose appropriate methods ac-
cording to their own research goals.
Reviewer comments: R3_2, “Line 10. I would suggest

modifying the classification. K-mer based tools should
not be classified alignment-based. As so, Kraken and
CLARK should be classified as k-mer based and Megan
as alignment-based.”
Author’s response: Thanks for this suggestion. We have

rewritten the description of current tools as follows.
“Sequence classification is a crucial step in metagenome

analysis. The methods for metagenome sequence classifica-
tion can be divided into two categories: (1) alignment-based
methods and (2) composition-based methods.”
“Alignment-based methods can be further divided into

seed-and-extend alignment-based method, mapping-based
methods and kmer-alignment based methods. Seed-and-extend
alignment-based methods like BLAST [6] and DIA-
MOND [7], which classify a query sequence by finding
the best alignment to a big database of reference ge-
nomes through sequence alignment methods.”
“Mapping-based methods are faster than seed-and-extend

alignment-based methods because of the benefits from the
mapping algorithm, while their sensitivity is very low in
general, like MiCoP [8]. Kmer-alignment-based methods,
like KRAKEN [9] and CLARK [10], have advantages both
on speed and precision by using of exact-match database
queries of kmers, rather than inexact alignment of se-
quences. For example, KRAKEN is 909 times faster than
Megablast (BLAST-based system) [9].”
Reviewer comments: R3_3, “It is worth to mention

marker-based tools like Metaphlan2 (MetaPhlAn2 for
enhanced metagenomic taxonomic profiling. Duy Tin
Truong, Eric A Franzosa, Timothy L Tickle, Matthias
Scholz, George Weingart, Edoardo Pasolli, Adrian Tett,
Curtis Huttenhower & Nicola Segata. Nature Methods
12, 902-903 (2015)) and another alignment tool MiCoP,
which based on BWA alignment: LaPierre, Nathan, et al.
“MiCoP: Microbial Community Profiling method for de-
tecting viral and fungal organisms in metagenomic sam-
ples.” bioRxiv (2018): 243188. Besides the classes of
microbiome analysis method, there is a class of
reference-free method. One of them is: Mangul, Serghei,
and David Koslicki. “Reference-free comparison of mi-
crobial communities via de Bruijn graphs.” Proceedings
of the 7th ACM International Conference on Bioinfor-
matics, Computational Biology, and Health Informatics.
ACM, 2016.”
Author’s response: Thanks for the suggestion. These

methods have been descripted in discussion part as follows.
“Sequence classification methods try to predict the

source of each sequence, and these classification results
can be subsequently used to analysis community compos-
ition structure, like MetaBinG2. Apart from sequence clas-
sification strategy, there are reference-free methods [3] and
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marker-based methods like MetaPhlAn2 [24] directly focus
on difference among samples or community structure pre-
diction rather than each sequence prediction. Researchers
should choose appropriate method according to different
goal.”
Reviewer comments: R3_4, “Please explain how

composition-based are different from alignment based
and k-mer based methods”
Author’s response: Thanks for the suggestion. We re-

wrote the description of current tools.
“Sequence classification is a crucial step in metagenome

analysis. The methods for metagenome sequence classifica-
tion can be divided into two categories: (1) alignment-based
methods and (2) composition-based methods.”
“Alignment-based methods can be further divided into

seed-and-extend alignment-based method, mapping-based
methods and kmer-alignment based methods. Seed-and-extend
alignment-based methods like BLAST [6] and DIAMOND [7],
which classify a query sequence by finding the best alignment
to a big database of reference genomes through sequence align-
ment methods.”
“Mapping-based methods are faster than seed-and-extend

alignment-based methods because of the benefits from the
mapping algorithm, while their sensitivity is very low in gen-
eral, like MiCoP [8]. Kmer-alignment-based methods, like
KRAKEN [9] and CLARK [10], have advantages both on
speed and precision by using of exact-match database quer-
ies of kmers, rather than inexact alignment of sequences.
For example, KRAKEN is 909 times faster than Megablast
(BLAST-based system) [9].”
“However, for all these alignment-based methods, their

accuracy drops dramatically when dealing with samples with
many unknown organisms. By contrast, composition-based
methods, such as Phymm [11], NBC [12] and metaCV [13]
depend less on reference genomes.”
Reviewer comments: R3_5, “This statement needs

further explanation. Line 30. “ benefiting from the con-
servative property of amino acid sequences “. Usually,
matching nucleotides sequences are more conservative
compared to matching aa sequences. since the reads are
generated as nt sequences.”
Author’s response: Thanks for the suggestion. We re-

wrote the description about metaCV as follows.
“MetaCV uses k-mer frequency vectors of translated

peptide sequences instead of the nucleotide sequences
against the reference protein sequence database to deter-
mine the source organism.”
Reviewer comments: R3_6, “Line 38. Please provide

number of samples for each city (n=?) and average num-
ber of reads per city and standard deviation”
Author’s response: Thanks for this advice. All informa-

tion was added in Additional file 1: Table S2.
Reviewer comments: R3_7, “Definition of dataset A

and B are confusing. Some intuition behind the choice

of those datasets needs to be provided. If the purpose
was to simulate the effect of species missing from the
reference this needs to be clearly defined and explained.
For example, what the % missing and was it only bac-
teria or other species as well?”
Author’s response: The 2606 genomes in reference

dataset A are all from microorganisms. Reference dataset
B include more microorganisms genomes and even some
eukaryotes. Reference dataset A is a subset of dataset B.
Since some existing tools are memory demanding, dataset
B was too big as reference database for some tools. We
downloaded all bacterial reference genome sequences in
an older and smaller dataset. We have revised the de-
scription of dataset A and B to address this issue.
“Reference dataset A. Reference dataset A contains

2606 microbe genomes and the genome numbers at
various taxonomy level are shown in Table 1. They were
downloaded from NCBI website (ftp://ftp.ncbi.nlm.nih.-
gov/genomes/archive/old_refseq/Bacteria/ updated on
June 2, 2015). Multiple databases were generated from
this reference dataset A to evaluate CLARK, DIA-
MOND, metaCV, MetaBinG, and MetaBinG2. All
reference databases in our analysis except for Meta-
SUB analysis were generated according to Reference
dataset A.
Reference dataset B. Reference dataset B is a compre-

hensive reference dataset. It contains 7675 genomes, in-
cluding 7459 from bacteria, 63 from eukaryotes, 153
from Archaea. These genomes were downloaded from NCBI
genome database (ftp://ftp.ncbi.nlm.nih.gov/genomes/) on
Mar 27, 2017.The bacterial genome numbers at various tax-
onomy levels are shown in Table 1. Reference dataset A is a
subset of reference dataset B. A comprehensive database
was generated from this reference dataset B for MetaBinG2
on the MetaSUB dataset.”
Reviewer comments: R3_8, “Accuracy definition is

incorrect. According to https://en.wikipedia.org/wiki/
Precision_and_recall, Accuracy includes FN which is not
part of Sensitivity and Precision.”
Author’s response: The definition of accuracy we

adopted in this paper was not the same as the one shown
in this link. Since a large portion of the sequences may be
classified as unknown by existing tools, we adopted the
accuracy definition presented in this paper to deal with
the unknown organisms. We believe it is a fair and rea-
sonable measurement for our comparison.
Reviewer comments: R3_9, “Running time, CPU

usage, and CPU time needs to be added.”
Author’s response: Thanks for pointing it out. We have

added this information as follows (Table 2).
Reviewer comments: R3_10, “p.9 line 4. Definition of

K-L divergence needs to be explained. Ideally, it pur-
poses and rationale of using this metric needs to be
explained”
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Author’s response: Thanks for pointing this out. Shan-
non index of one city was used to represent the commu-
nity diversity of a sample. Shannon index distributions in
samples of cities were used to compare the difference of
sample’s community diversity among cities instead of K-L
divergence. Definitions as well as the rational of using
them have been added in the methods. Shannon index
distribution is clearer to show the difference among cities’
samples.
Reviewer comments: R3_11, “p. 9. line 8. The paper

claims the highest complexity of Sacramento samples.
Was this measure normalize by the total number of
reads. Ideally, one would subsample each sample to
bring all sample from different sample to the same num-
ber of reads.”
Author’s response: The community complexity was

measured by Shannon index, which was calculated by
the proportions instead of the raw frequencies. Therefore,
all samples have been normalized before comparison.
Reviewer comments: R3_12, “Results obtained based

on NY and Boston sample needs to compared to the
publication originally introducing those. Is the paper
able to confirm the results of the original papers? How
was mush novel found due to the novel method?”
Author’s response: Thanks for the suggestion. Compari-

son with published results of MetaSUB has been added
in discussion part. Details can be found as follows.
“The results were compared to the previous study. For

24 Boston samples (WGS), Hsu et al. used KneadDATA
v0.3 pipeline to remove low-quality reads and human
host sequences [22]. The average sequence depth de-
creased from 16.7 × 106 to 9.8 × 106 reads per sample. In
samples after pretreatment, Actinobacteria took the
major proportion. In our analysis, the result was similar:
~ 30% of reads were identified as Chordata and the top 2
phyla in terms of frequency were Chordata and Actino-
bacteria (both with abundance over 30%) (Fig. 5a), The
previous study [22] suggested that microbial communities
on transit surfaces are corresponding to local interactions
with the human body and environmental exposures. In
our analysis result, we found the community diversity on
seat and seat back was significantly higher than the other
places (grips and touchscreens) when humidity is 56%
(p-value< 0.0001 Pairwise test), and seat is relatively higher
than seat back (Additional file 1: Figure S7). For New York
samples, our results showed the similar community
composition on phylum level with a previous study by
Afshinnekoo et al. [23] (Additional file 1: Figure S6). For
New York samples and Boston samples, we found humid-
ity as a factor associated with the community diversity
(Fig. 6). The places with higher humidity may have higher
community diversity. For the Sacramento samples, it was
reasonable that Streptophyta, Actinobacteria, and Chord-
ata took the major proportions. These samples were from

light rail stations, and the sampling locations were on the
ground, where the surrounding vegetation is abundant. Al-
though there is not significant difference among samples,
some phyla’s changes among samples may give some useful
information. For example, human traffic may be
estimated with the result of MetaBinG2 classification
(Additional file 1: Figure S9).”
Reviewer comments: R3_13, “Results about pathogens

are important. How confident authors are that those re-
sults are not FP. Pathogens originally reported in NY
study, are actually FP, as was suggested here: https://
www.nature.com/articles/nbt.3868, Living in a microbial
world. The question of how probable those are FP needs
to be addressed”
Author’s response: Thanks for this point. The results

about pathogens have been removed in order to avoid
over interpolating of the sequencing data.
Reviewers’ comments (for the revision) RR_1: “The

authors have well addressed most of my comments and
I don’t have much else to say about the scientific aspects
of the manuscript. The method looks good, they show a
clear improvement at different levels compared to previ-
ous methods and the results presented reflect well its
performance. However, the manuscript cannot be pub-
lished in the current form. There are so many issues in
the general presentation of the manuscript, that is really
pointless to put them in a list. I strongly recommend the
authors to get assistance or work much more intensively
on this. I will just list a few comments in the “Minor Is-
sues” text box, which I made while reading the manu-
script. These are merely examples, but the authors
should be aware that it is only very few from many flaws
in the texting of the manuscript.
Author’s response: Thanks for reviewer’s suggestion.

We have revised the manuscript again.
Minor issues
Latest reviewer’s comments: RR_2_1, “Line numbers

were not added, as they say in the response to reviewers,
which still makes commenting the manuscript very
complicated.”
Author’s response: Done.
Reviewer comments: RR_2_2, “I find the first part of

the introduction (about metagenomics) not really rele-
vant for purpose of this work, or the applications of the
method. I think that the first paragraph can be simply
deleted, for clarity.”
Author’s response: MetaBinG2 classifies all sequences

of samples rather than a few of them and ignore un-
known organisms. This part introduces the importance of
unknown organisms in many researches. These researches
required a tool like MetaBinG2 to give an outline of a
sample. The introduction for the importance of unknown
organisms was also suggested by Reviewer 3 to make the
background more substantial.
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Reviewer comments: RR_2_3, “MEGAN is not a
seed-and-extend classification method per se. Is a
visualization software for classified sequences (either by
Blast or DIAMOND). I think that in the description of
other available methods, what they do and what their
flaws are could be a bit improved, to be clearer and
more accurate.”
Author’s response: We modified the description about

methods mentioned accordingly in the introduction part.
Reviewer comments: RR_2_4, “In the exclusion

method, for subsets of dataset A, it is not clear which
species, genus, orders, etc. excluded in each case, from
(2) to (6). How many of each? The Fig. 1 does not really
help on this. How many genomes are “condensed”
within each (+) sign?”
Author’s response: We added the details of each ex-

cluded database in the text. More information about simu-
lated dataset is descripted in Additional file 1: Figure S1.
Reviewer comments: RR_2_5, “Is not necessary to

copy and paste a definition of Shannon index, which is
widely used in metagenomics. Just how do they use it in
the manuscript (which is not explained in M&M).”
Author’s response: Done.
Reviewer comments: RR_2_6, “The sentence about

CUBLAS is duplicated in two consecutive paragraphs.
This was already mentioned by Reviewer 1 in the first
revision.”
Author’s response: Thanks, one has been removed.
Reviewer comments: RR_2_7, “Figure legend 3: there are

redundant phrases (same information mentioned twice).”
Author’s response: Fig. 3 has six subfigures labeled

with (a)-(f ). We mentioned the same information twice to
avoid ambiguity.
Reviewer comments: RR_2_8, “Fig. 4a and b are not

mentioned in the text Which were the results of the
Kruskal-Wallis test (they only say that it was not significant).”
Author’s response: The description for Fig. 4a and b

has been revised in the results part. Kruskal-Wallis test
was used to analyze MetaSUB data (Figs. 5 and 6).
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