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Abstract

Background: Neuroblastoma is the most common pediatric malignancy with heterogeneous clinical behaviors,
ranging from spontaneous regression to aggressive progression. Many studies have identified aberrations related to
the pathogenesis and prognosis, broadly classifying neuroblastoma patients into high- and low-risk groups, but
predicting tumor progression and clinical management of high-risk patients remains a big challenge.

Results: We integrate gene-level expression, array-based comparative genomic hybridization and functional gene-
interaction network of 145 neuroblastoma patients to detect potential driver genes. The drivers are summarized
into a driver-gene score (DGscore) for each patient, and we then validate its clinical relevance in terms of
association with patient survival. Focusing on a subset of 48 clinically defined high-risk patients, we identify 193
recurrent regions of copy number alterations (CNASs), resulting in 274 altered genes whose copy-number gain or
loss have parallel impact on the gene expression. Using a network enrichment analysis, we detect four common
driver genes, ERCC6, HECTD2, KIAA1279, EMX2, and 66 patient-specific driver genes. Patients with high DGscore, thus
carrying more copy-number-altered genes with correspondingly up- or down-regulated expression and functional
implications, have worse survival than those with low DGscore (P =0.006). Furthermore, Cox proportional-hazards
regression analysis shows that, adjusted for age, tumor stage and MYCN amplification, DGscore is the only
significant prognostic factor for high-risk neuroblastoma patients (P =0.008).

Conclusions: Integration of genomic copy number alteration, expression and functional interaction-network data
reveals clinically relevant and prognostic putative driver genes in high-risk neuroblastoma patients. The identified
putative drivers are potential drug targets for individualized therapy.

Reviewers: This article was reviewed by Armand Valsesia, Susmita Datta and Aleksandra Gruca.
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Background

Neuroblastoma, an embryonal malignancy in sympa-
thetic nervous system, is the most frequent extracranial
solid tumor in very young children [1]. It accounts for
7% of pediatric oncology and 15% of childhood cancer
deaths [2, 3]. There are more than 10 cases diagnosed
per million per year in children younger than 15 years
old [4, 5]. Neuroblastoma is highly heterogeneous with
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various clinical courses, ranging from spontaneous re-
gression to aggressive and therapy-resistant progression
despite intensive treatment [6-8]. Prognosis of neuro-
blastoma patients is associated with many factors, such
as age at diagnosis, tumor stage and oncogene MYCN
amplification [9]. Patients with stage 4 and age older
than 18 months at diagnosis or patients of any age and
stage with MYCN-amplified tumors are referred to as
high-risk patients [10]. Overall, half of these tumors re-
gress spontaneously, or are cured by various treatments
[7], but the high-risk neuroblastoma often shows a rapid
progression and unfavorable clinical results. Thus,
current research is mainly focused on the identification
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of molecular predictors of outcome in the high-risk
group. The high-risk neuroblastoma can be identified at
a chromosomal level by the presence of segmental aber-
rations, such as amplification, deletion and translocation.
Although several alterations including MYCN amplifica-
tion, TERT rearrangements, ALK and ATRX mutations are
identified to be associated with neuroblastoma, detection
of potential mutated drivers is still hampered by the low
mutation frequency [11]. We hypothesize that additional
clinically relevant structural alterations rather than point
mutations might occur in high-risk neuroblastoma.

In this study, we aim to identify potential drivers of
neuroblastoma by integrating various molecular features,
including RNA sequencing (RNA-Seq), array-based com-
parative genomic hybridization (aCGH) data for copy num-
ber alterations (CNAs) and functional gene-interaction
network. The drivers are defined as recurrent genomic al-
terations in tumor patients with significant impact on RNA
expression of (i) the local gene and (ii) neighboring genes in
their functional interaction network. For each patient, we
summarize the number of driver genes into a driver-gene
score (DGscore) to evaluate the accumulated effects of
driver genes. Furthermore, to assess the clinical relevance
of the detected potential driver genes, we validate them in
terms of association with patient survival. We demonstrate
that the integration of diverse omics and functional data
provides biologically and clinically relevant insight in
neuroblastoma research in terms of potential drug targets
and cancer etiology.

Methods

Patients and datasets

The Neuroblastoma Data Integration Challenge of
CAMDA 2017 (http://camda.info/) provides expression
profiles of 498 neuroblastoma patients, of which 145 pa-
tients have both RNA-Seq and aCGH data. There are 89
male and 56 female patients, and the age at initial patho-
logical diagnosis ranged from 0 to 24.6 years old, with a
median of 1.2 years old. Among the 145 patients 48 of
them are clinically defined as high-risk (33%) neuroblast-
oma and 97 as low-risk (67%) [10]. Summarized infor-
mation can be found in Additional file 1. MYCN is a
common proto-oncogene in neuroblastoma and exam-
ined by clinical diagnostic FISH test. We categorize the
patients into 23 with MYCN amplification and 122 with-
out MYCN amplification, respectively. Staging by the
International Neuroblastoma Staging System (INSS)
[12], there are 33 patients at stage I, 20 at stage II, 20 at
stage III, 47 at stage IV and 25 at stage IV-S. In order to
optimize power, we focus our analysis on the 48 HR pa-
tients. We also report a potential problem of reversed la-
bels between tumor and normal in the aCGH data of 32
patients. Intensity values in these samples are suggested
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to be reversed before any further analysis. More details
can be found in Additional file 2.

Integrative statistical analysis

The integrative procedures are derived from a pipeline
previously developed for driver gene detection in TCGA
breast cancers [13]. The key difference is the use of re-
gional copy-number alteration (CNA) rather than
point-mutation data. Figure 1 presents an overview of
the procedures to identify potential driver genes, includ-
ing data pre-processing, copy number calling, integrative
analysis and clinical validation.

First, we use two computational algorithms, MPSS
[14] and cnvpack [15], to identify CNAs within and
recurrently across patients, respectively. Based on a
correlated random-effect model for the unobserved
patterns, MPSS takes a robust smooth segmentation
approach to identify whether a segment is a true
CNA [14]. For each individual, the segmentation
threshold is fixed at — 0.15 and 0.15 of the intensities
for deletion and duplication, respectively. Segments
with False Discovery Rate (FDR) greater than le-05,
length of segments <1 kb and number of probes less
than 10 are filtered out. We then use cnvpack to de-
tect recurrent CNA regions, which are defined as al-
terations occurred in at least 10% of all patients [15].
To investigate the impact of CNAs on gene expres-
sion, we annotate genes on CNAs and compare the
gene expression pattern in samples with alterations
and samples with normal copy number. We keep
genes which exhibit significantly over-expression in
amplified samples compared to the non-altered, based
on p-value (P)<0.05 from one-sided Welch’s t-test,
vice versa for genes with deletions. These genes are
then chosen as potential drivers and referred to as
functional gene set (FGS, Fig. 1).

In parallel to the CNA analysis, we obtain gene expres-
sion data for 60,776 genes derived from RNA-Seq, which
are measured in FPKM using Magic-AceView (MAV)
pipeline [16]. The raw gene expression data are then
centered and variance scaled within each patient. Since
no paired normal tissues are available for the patients, it
is tricky to define tumor-specific differentially expressed
genes (DE genes), usually identified by comparing nor-
mal vs. tumor tissues. We implement a new strategy to
define patient-specific and common extremely expressed
genes. We rank the expression level of each gene across
all the 498 samples. For each patient, we then keep the
top 100 highest and 100 lowest ranked genes as
patient-specific extremely expressed genes or the
so-called patient-specific expression-altered gene sets as
shown in our analysis pipeline (Altered Gene Set, AGS,
Fig. 1). A collection of recurrent patient-specific AGS is
considered as common AGS. In addition to the
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Fig. 1 Flowchart of the identification of potential driver genes and clinical validation
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expression profile-based AGS, 52 neuroblastoma-related Next, to integrate the results of copy number alter-
genes from literature [9] are also considered as AGS. ation and gene expression data, we implement network
The list of 52 literature-based genes can be found in  enrichment analysis (NEA) as follows. The key idea for
Additional file 3. NEA is that the functional impact of each
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copy-number-altered gene can be assessed according to
the number of differentially expressed neighbors in a
gene interaction network. In the NEA analysis, the sig-
nificance is accessed using a quantitative enrichment
score (z-score), which measures the over-representations
of direct links between the AGS and FGS. The z-score is
calculated as

dar-
7 — HAF
OAF

7

where dr is the number of network links between genes
in the AGS and the FGS, and par and oar are the ex-
pected mean and standard deviation of dap. We use a
comprehensive network containing 1.4 million func-
tional interactions between 16,288 HUPO genes/proteins
[17]. Each copy-number-altered gene in FGS is assessed
for its central functional role in modulating the expres-
sion of its interacting neighbors in the network. Genes
which are functionally significant, with z-score > 2, are
considered as putative driver genes. We compute the
total number of drivers with CNAs in each patient and
call it the ‘driver-gene score’ (DGscore). Finally, for clin-
ical validations, we compare the prognosis of patients
with DGscore higher than the median versus those lower
than the median.

Results
Driver genes in high-risk neuroblastoma
Among 48 high-risk (HR) neuroblastoma patients, we
identify 4058 CNAs with an average 84 and range 9~
433. Next, we detect 193 recurrent CNAs observed in at
least 5 (~ 10%) of the 48 subjects. We then annotate the
CNAs based on probe-gene information available from
original aCGH data. The recurrent CNAs contain a total
of 6390 genes after annotation. To investigate the impact
of CNAs on gene expression, for each gene, we compare
the gene expression pattern in samples with alteration to
samples with normal copy number, using one-sided
Welch’s t-test. Genes with significantly over-expression
in amplified samples compared to non-altered (P < 0.05)
are kept for downstream analysis; similarly for genes
with copy number deletions. After filtering we have a
final set of 274 recurrently altered genes, which then
serve as FGS in the network enrichment analysis [13].
Depending on the way we define expression-altered
gene sets (AGS), NEA can be used to identify potential
driver genes that are either common or patient-specific.
To identify patient-specific driver genes, we perform the
NEA analysis within each sample, where the AGS is the
top 200 patient-specific extremely expressed genes and
FGS is the patient-specific genes among the 274 altered
genes. We detect 66 unique patient-specific drivers, with
a median of 2.8 drivers per patient; notably, MYCN and
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OTOP3 were identified as drivers in 13 patients. A list of
the 66 drivers and the frequency in HR patients can be
found in Additional file 4.

To identify common driver genes, FGS and AGS are built
as follows. For the FGS, we apply a more stringent criterion
by excluding recurrent CNA regions that contain both am-
plifications and deletions across patients. The reduced FGS
contains 30 genes, of which 10 genes exhibit only amplifica-
tions and 20 genes only deletions. Next, AGS is derived
from two sources: 1) 52 neuroblastoma-related genes from
literature [9], and 2) 111 common extremely expressed
genes recurrent in at least 5 patients. The NEA analysis
finds four common potential driver genes ERCCES,
HECTD2, KIAA1279 and EMX2.

We use the bootstrap method to assess the stability in
the detection of common driver genes. The bootstrap
sampling is replicated 50 times, where for each sample we
perform the analysis pipeline as described in the Method.
For each of the 4 observed common driver genes, we cal-
culate the proportion of being selected as driver. The
bootstrap-based P-value is computed as follows: Under
the null hypothesis of no driver gene, the number of times
a gene is selected as driver is binomial with » =50 and
p =4/6390~ 0.0006. Thus P-value =P(X>x) if a gene is
selected x times as driver. The observed proportions and
p-values are: ERCC6 (proportion =042, P-value=
1.45e-54), HECTD2 (0.18, 2.469604e-20), EMX2 (0.16,
8.817728e-18) and KIAA1279 (0.14, 2.733703e-15). Thus
the proportion of observed drivers is substantially higher
than expected under randomness. The result shows the
robustness and stability of our integrative analysis results.

To examine the clinical relevance of the potential
drivers, we divide 48 HR samples into high and low
DGscore groups, where the high DGscore is defined as
larger than the median value. Fig. 2a shows that neuro-
blastoma HR patients with a high DGscore have poor
survival compared with low DGscore patients (Fig. 2a, P
= 0.006). However, if we simply use the 274
non-functionally characterized CNA genes, we would
not be able to predict well the patients’ survival (Fig. 2b,
P = 0.492). This indicates the importance of functionally
characterizing recurrent altered genes by NEA. Another
advantage of DGscore is that by integrating informa-
tion of common and patient-specific driver genes, it
can capture both the recurrent and individualized sig-
natures in tumors. Separately using either only
patient-specific driver genes (Fig. 2c) or only common
driver genes (Fig. 2d) from NEA cannot predict pa-
tient survival well (P> 0.2).

For neuroblastoma, tumor stage, MYCN oncogene
amplification and age are known prognostics factors, but
not necessarily so for HR patients. We thus investigate
whether the DGscore has a prognostic value independ-
ent of the previously known predictors. To do that, we
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Fig. 2 Comparison of survival analysis for 48 high-risk patients split by different levels of omics integration. (@) Functionally characterized
drivers refer to the four common-driver genes and 66 patient-specific drivers identified following the proposed procedure in this study. (b)
Non-functionally characterized mutations refer to the 274 genes whose copy-number gain or loss have parallel impact on the gene expression.
(c) The DGscore takes only patient-specific drivers into account. (d) The DGscore takes only common drivers into account

include these factors in Cox regression analysis of HR
patients. In Table 1, Model la-1d display the individual
predictors in univariate regression, where DGscore is the
only significant predictor (Model la, P=0.008). Note
that in particular, the MYCN amplification is not signifi-
cant (Model 1c, P =0.65). The following Model 2—4 show
that DGscore remains highly significant after adjusting for
tumor stage, MYCN amplification or age. Furthermore,
compared with Model 5 which incorporates three known
neuroblastoma risk factors, Model 6 shows that DGscore
still remains the most significant when all three clinical
variables are adjusted for together.

We also perform the NEA analysis for the whole 145
patients, consisting 48 HR and 97 LR. No common
driver genes are detected across all 145 samples. Inter-
estingly, our patient-specific analysis successfully identi-
fies 18 individualized drivers, which can be found in
Additional file 5. We calculate the DGscore using indi-
vidualized drivers to predict patients’ survival. Results

show the 18 driver genes clearly separate the patients
into two distinct survival groups (Fig. 3, P = 1.14e-05).
Recently, Peifer et al. [11] reported recurrent genomic
rearrangements affecting the expression of telomerase
reverse transcriptase gene (TERT), which significantly
separates high-risk neuroblastoma from low-risk. The
high-risk patients with unfavorable outcome are charac-
terized by high TERT expression level as a result of ei-
ther TERT rearrangement or MYCN amplification. By
contrast, the low-risk tumors are defined by low TERT
expression and the absence of these alterations. Among
the 145 patients, TERT expression is indeed highly dif-
ferentially expressed between high- and low-risk groups
(P=2.67e-14). To investigate whether TERT expression
remains informative in high-risk patients, we use TERT
expression level to predict patients’ survival time. We
divide the 48 high-risk patients into high and low ex-
pression groups based on the median value of TERT ex-
pression. The result shows that TERT cannot predict
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Table 1 Cox proportional-hazard regression models of survival

Model Variable Hazard ratio P
Model 1a  DGscore 269 0.008
Model b Tumor stage 141 0.52
Model 1c  MYCN amplification 1.18 0.65
Model 1d  Age 1.00 0.058
Model 2 DGscore+tumor stage®

DGscore 2.69 0.008

Tumor stage 141 0.52
Model 3 DGscore+MYCN®

DGscore 2.68 0.007

MYCN amplification 1.15 0.70
Model 4 DGscore+age

DGscore 267 0.008

Age 1.00 0.064
Model 5 Age + MYCN + tumor stage

Age 1.00 0.021

MYCN amplification 1.98 0.12

Tumor stage 1.89 0.28
Model 6 DGscore+Age + MYCN + tumor stage

DGscore 2.69 0.008

Age 1.00 0.02

MYCN amplification 202 0.12

Tumor stage 1.94 0.27

2Stage 4/4S are compared against Stage I-Ill; °No MYCN amplification is used
as reference group; “P-values from the Wald test
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Fig. 3 Survival analysis for 145 samples using patient-specific driver
genes. The blue solid line is the group of patients with low DGscore
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patient survival well within high-risk patients (P = 0.581,
Fig. 4). Thus, while TERT separates high- and low-risk
patients, the DGscore is more informative and prognos-
tic than TERT within the high-risk neuroblastoma

group.

Discussion

We have implemented an integrative omics analysis to
identify potential driver genes in neuroblastoma and val-
idate these drivers clinically in terms of survival predic-
tion. The results show that high-risk neuroblastoma
patients who carry more copy-number-altered genes
with functional implications and extreme expression
patterns have worse survival than those with less poten-
tial driver genes. The potential drivers, especially the
patient-specific drivers, may provide insights into drug
targets for individualized precision medicine and help in
understanding the tumor biology.

An advantage of the integrative scheme is that it cap-
tures drivers in a global and patient-specific manner. The
common driver genes identified in high-risk (HR) patients
have been discovered to play important roles in neuronal
differentiation in previous studies. ERCC6-depleted neuro-
blastoma cells show defects in gene expression programs
required for neuronal differential and fail to differentiate
and extend neurites [18]. EMX2 is a prognostic and pre-
dictive biomarker in malignant pleural mesothelioma [19].
Nonsense mutations in KIAAI1279 are associated with
malformation of the central and enteric nervous system
[20]. Furthermore, the top two mostly recurrent drivers
revealed through the patient-specific approach, OTOP3

TERT expression
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T
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Fig. 4 Survival analysis for 48 high-risk patients using TERT
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and MYCN, are identified as a driver event in 13
(27%) out of the 48 HR patients. In fact, MYCN is
one of the best characterized genetic alterations in
neuroblastoma [21]; and copy number gain of
chromosome 17q, where OTOP3 is located, is a
known neuroblastoma risk factor [22].

The Genotype-Tissue Expression (GTEx, https://
www.gtexportal.org) provides an atlas of human gene ex-
pression and regulation across multiple human tissues.
Using the data from GTEx, we have also examined the
expression level of the four identified driver genes across
multiple tissue types. We find that for ERCC6, HECTD?2
and KIAA1279, the expression levels are higher in the
brain and neural tissues than in other tissues. Since
neuroblastoma is a malignancy of the sympathetic ner-
vous system, this information provides further support
on the role of the drivers in the pathogenesis and eti-
ology of the disease.

We do not identify any common drivers across all 145
neuroblastoma patients using the NEA analysis. It could
be due to two reasons: first, since neuroblastoma has a
low genetic alteration frequency and a highly heteroge-
neous alteration spectrum, the common driver genes for
the whole 145 patients may not exist; second, due to the
potential mislabeling problem in aCGH data, CNAs de-
tected in some patients may be incorrect, especially for
the patients in low-risk group without MYCN amplifica-
tion (The mislabel samples are identified utilizing
MYCN alteration status. See Supplementary Report). It
also makes sense that we identify 18 patient-specific
driver genes because the potentially reversed intensity
values would affect the global across-patient result more,
but not patient-specific result.

One limitation of our current analysis is the small
number of patients in high-risk group. Ideally we have
an independent dataset with both aCGH and expression
data for further validation. However, despite the small
sample size, the DGscore is highly associated with pa-
tient survival. The predictive power is better than some
existing prognostic factors in neuroblastoma, such as
age, tumor stage, MYCN oncogene amplification and
TERT expression. The failure of MYCN alteration alone
as a prognostic marker in the high-risk group is likely
due to two reasons: first, to serve as a driver gene in a
patient, the MYCN alteration should have a high impact
on its gene expression. It means that the alteration alone
is not sufficient to be a driver gene without considering
its impact in gene expression and functional implica-
tions; second, unlike the DGscore, which summarizes
the total number of driver genes within a patient, MYCN
amplification is only one of those potential drivers and
contributes partially to the DGscore. It demonstrates the
importance to integrate information of common driver
genes or patient-specific signatures in tumors.
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As another limitation, the annotation and functional
characterization of genes used in this study rely on (i)
known databases, and (ii) non-directional biological
network. The databases are most likely incomplete and
not necessarily validated. Experimentally validated
networks are useful for assessing the causal relationship
between a putative driver gene and its neighbors. With
further progress in completing the functional networks
and annotation, our analysis pipeline would make an
even more accurate identification of potential drivers.

Conclusions

We use an integrative approach to exploit various omics
data including RNA-Seq and aCGH profiles in neuro-
blastoma patients. The approach integrates gene expres-
sion, genomic alterations and functional information to
identify potential driver genes which could be prognostic
factors for patients’ survival. Patients who carry more al-
tered driver genes with functional implications have
worse survival than those with fewer drivers. The identi-
fied drivers may provide us new insights on the molecu-
lar determinants of neuroblastoma progression and
potential targets for individualized therapy.

Reviewer’s comments
Reviewer’s report 1: Armand Valsesia
Reviewer comments:

Dr. Suo and colleagues made a nice integrative analysis
of the CAMDA neuroblastoma data. They highlighted
genes both affected by Copy Number Alterations and
extreme high/low expression levels. Within a set of 48
patients, they report 274 such genes, of which 4
emerged, from network enrichment analyses, as recur-
rent across patients and 66 being patient-specific. These
genes were then integrated into a “driver gene-score”
(DG-score which represents the total number of CNA
genes identified in a patient). Subjects were then
grouped according to their DG-score and association
was tested with their survival prognosis.

1. Your study is an interesting one, and the DG-score is
a simple quantity that may appeal to clinicians. However,
additional validations would be required to further dem-
onstrate the robustness of such score. Cross-validation,
bootstrap and related methods would help showing such
robustness.

Author’s response: We thank the reviewer for raising
this issue. We use the bootstrap method to assess the
stability in the detection of common driver genes. The
bootstrap sampling is performed 50 times, where for each
sample we perform the analysis pipeline as described in
the Method. For each of the 4 observed common driver
genes, we calculate the proportion of being selected as
drivers. The bootstrap-based P-value is computed as
follows: Under the null hypothesis of no driver gene, the
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number of times a gene is selected as driver is binomial
with n=50 and p=4/6600~0.0006. Thus P-value =
P(X > x) if a gene is selected x times as driver. The ob-
served proportions and p-values are: ERCC6 (0.42,
1.45e-54), HECTD2 (0.18, 2.469604e-20), EMX2 (0.16,
8.817728e-18) and KIAAI279 (0.14, 2.733703e-15).
Thus the proportion of observed drivers is substan-
tially higher than expected under randomness. The
result shows the robustness and stability of our inte-
grative analysis results.

2. Additionally, a subset of the CAMDA data, and
perhaps additional support could be derived by the 353
subjects having either RNA-seq or CGH data. Notably,
consistency of expression in the identified genes; and
similarly of the CNA would further support the list of
identified genes.

Author’s response: We have performed survival ana-
lysis using the four common driver genes in patients with
only gene expression data. The result shows that the sur-
vival of patients with lower DGscore is better than those
with high DGscore (Additional file 6), but the p-value is
not significant (p-value =0.219). This result indicates
that copy number alteration is necessary to identify com-
mon and patient-specific driver genes. Also, the combin-
ation of common and patient-specific drivers would in
turn increase power in predicting patient survival.

3. Minor comment: In the method, the age of diagno-
sis starts at 0. Was it really at dayl? Can this be
expressed in few days/months?

Author’s response: In the raw data the age of
diagnosis is given in days and there are 15 patients
diagnosed from dayl.

4. More descriptive plots on the expression levels of
the identified genes would be useful for interpretation.
Additionally, description of expression levels of identi-
fied genes in non-cancer samples would be useful. (eg.
Using tissue-specific information from GTEX.org)

Author’s response: Thank you for your suggestion. We
have examined the expression level of the four identified
driver genes across multiple tissue types, using data from
GTEX. We find that for ERCC6, HECTD2 and
KIAA1279, the expression levels are higher in brain and
nerve than other tissues (Additional file 7). Since neuro-
blastoma is a malignancy in sympathetic nervous system,
the results indicate these drivers may contribute to the
pathogenesis and etiology of the disease. We have incor-
porated this extra information in the Discussion section.

Reviewer’s report 2: Susmita Datta
Reviewer comments:

In this paper authors have integrated array based
expression data, copy number variation data and func-
tional genomic network data on 145 Neuroblastoma pa-
tients to detect common driver genes and patient
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specific driver genes to obtain a DGscore. They further
fitted a Cox proportional hazard model to conclude that
patients with high DGscore after adjusting for some
other covariates such as age and tumor stage may
serve as a better prognostic factor of Neuroblastoma
than just the single molecular marker. The work is
interesting however, the study is full of selection bias
of the samples.

Reviewer recommendations to authors

In this paper you have integrated array based expres-
sion data, copy number variation data and functional
genomic network data on 145 Neuroblastoma patients
to detect common driver genes and patient specific
driver genes to obtain a DGscore. They further fitted a
Cox proportional hazard model to conclude that pa-
tients with high DGscore after adjusting for some other
covariates such as age and tumor stage may serve as a
better prognostic factor of neuroblastoma than just the
single molecular marker. The work is interesting how-
ever, the study is full of selection bias of the samples. I
have the following questions such as:

1. You have mentioned to optimize the power of the
study they utilize 48 high risk (HR) patients. How did
you select 48 out of 145 HR patients? Please describe
the selection criteria.

Author’s response: High-risk neuroblastoma are clinic-
ally defined as patients with stage 4 and age older than
18 months at diagnosis or patients of any age and stage
with MYCN-amplified tumors [10]. In our dataset, there
are 145 patients with both RNA-seq data and aCGH
data. Out of the 145 patients, 48 are high-risk patients
(33%) and 97 low-risk patients (67%). We have incorpo-
rated this in the Methods to section.

2. You detect copy numbered altered regions and then
find gene expression patterns in those regions and com-
pare them with expressions in non-altered regions and
perform t-test to see the significant differences. However,
you did not perform multiplicity correction for the
t-test. Why is that?

Author’s response: Since we are going to apply several
layers of filters, each of which makes the candidate-driver
list more stringent hence more specific, at the start of the
process we want to prioritize sensitivity over specificity.

3. You treat RNA-Seq data differently. Why are the
expressions of genes centered and scaled within each
patient but not between patients? Do you want to ig-
nore patient to patient variability? You could have
found genes differentially expressed between the clin-
ically high risk and low risk patients. I don’t under-
stand the concept of expression altered gene-sets you
are not comparing them with anything else but only
reporting the centered and scaled expressions. So,
how are they deemed to be altered? Also here the
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sample size is 498 opposed to 48 in the high risk
group used for identifying CNAs and it definitely
creates a bias. You also take the literature based
Neuroblastoma related genes and provide their
expressions.

Author’s response: Centering and scaling of gene-expression
data are a common normalization method (23] to make the
data more comparable across patients. Overall differences in
gene-expression could, for example, be due to technical differ-
ences such as library preparation.

The total number of patients from the CAMDA is 498
but only 145 of them are with both gene expression data
and aCGH data. In this paper we focused on the 48
high-risk patients for two reasons: (i) this subgroup had
been identified previously as challenging for clinical
management, and (ii) statistically we have better chance/
power to detect association with patient survival.

4. You are then identifying the CNA genes in this big-
ger RNA-seq expression data and finding the association
with other altered genes. However, the meaning of ‘al-
tered’ is not clear. Why is the test statistic a z-score
here? I am a bit lost here.

Author’s response: We thank the reviewer for raising
this question. Expression-altered gene sets (AGS) are de-
rived only using gene expression, but not aCGH data.
We rank the expression level of each gene across all pa-
tients and the top 100 highest and 100 lowest ranked
genes are defined as patient-specific expression-altered
gene sets (AGS). A collection of recurrent patient-specific
AGS is considered as common AGS. So, by “altered”, we
mean a gene is differentially expressed.

We use the z-score statistic in Network Enrichment
Analysis to measure the over-representations of direct
links between the AGS and candidate driver genes. Genes
that have more direct links with AGS are more likely to
be drivers. We have revised the manuscript to clarify it
in page 6, Methods.

5. I am very confused about the definition of patient
specific driver and extremely expressed genes. You ig-
nore the between sample variability while finding highly
expressed genes.

Author’s response: To identify patient-specific extremely
expressed genes or the expression-altered gene sets (AGS),
we first rank the expression level of each gene across all
samples. In this way, the between-sample variability is ac-
tually taken into account. The patient-specific AGS are
those top 100 highest and 100 lowest ranked genes in each
patient. The patient-specific drivers are then identified
within each patient using network enrichment analysis be-
tween the AGS and candidate driver genes.

6. While predicting the survival you go back to the
high risk group of patients again to compare DGscore
high and low group. You have manipulated the data so
much that I am not even sure that the proportionality of
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hazards will be valid for running a Cox-proportional
Hazards model.

Author’s response: The DGscore is derived solely
based on molecular data, so we did not use any clin-
ical or survival data. Therefore, the survival analysis
can be considered as a clinical validation of the iden-
tified driver genes.

Reviewer’s report 3: Aleksandra Gruca
Reviewer comments:

The manuscript applies previously published frame-
work for driver gene detection by integrating data from
gene expression, copy number alteration, and functional
gene interaction network. The drivers are summarized
into a driver-gene score (DGscore) and validation of the
results is based on patients separation into survival
groups. In comparison to the previous work, here the
method is adjusted to be applicable to CNA data. The
results show that stratification of high risk patient based
on the DG score can be used as a prognostic factor for
patients’ survival and it gives better results than previ-
ously known predictors such as tumor stage, MYCN
amplification, age and TERT expression. The paper is
clearly written and the proposed methodology is suitable
to integrate multi omics data. I do not have any major
issues regarding the paper content, but before its publi-
cation, the authors should address the following points:

1. Altered gene set is extended by 52 neuroblastoma
specific genes known from the literature. It would be in-
teresting to know how adding such a list influenced the
results. Would it be possible to obtain DG scores that
separate into two distinct survival groups without in-
corporating these genes into analysis? In other words, do
the experimental data provide sufficient information to
separate patients into survival groups with the proposed
framework for data integration?

Author’s response: We thank the reviewer pointing this
out. Among the four common driver genes that we de-
tected, two of them, ERCC6 and HECTD?2 are based on
the 52 genes from literature. If we exclude these genes
from the DGscore we would not be able to predict the pa-
tients’ survival well (p-value > 0.1).

2. Selection of genes into FGS is based on statistical
analysis of gene expression patterns with alteration to
samples with normal copy number using one-sided
Welch’s test. Do any multiple testing corrections were
applied? If not, how the authors “defend” the results
against the occurrence of false positives? Please, clarify.

Author’s response: Since we will apply several layers of
filters to refine the list of potential drviers, we want to
prioritize sensitivity over specificity in this step.

3. Supplementary data should include the list of 52
neuroblastoma related genes from literature, which were
used to extend AGS. The authors should also provide
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the list of 18 patient-specific drivers separating the
whole 145 patients into survival groups.

Author’s response: Following the reviewer’s suggestion
we have added additional Table 4 and Table 5 for the 52
neuroblastoma related genes and 18 patient-specific
drivers, respectively.

4. Figure 3a and Fig. 3b present survival analysis,
which are rather unrelated to each other as one of it
shows survival analysis for 145 samples using
patient-specific driver genes and the other survival ana-
lysis for 48 high-risk patients using TERT expression
level. Therefore, taking into account logical structure of
the presentation of information, these results should be
presented in two separate figures.

Author’s response: Thank you for pointing this out. We
have separated Fig. 3 into Fig. 3 and Fig. 4 in the revised
manuscript.

5. It is not clear from the paper if patient-specific AGS
is extended by 52 neuroblastoma related genes from lit-
erature or if that extension concerns only common
genes. Please, clarify.

Authors’ response: The extension of AGS by these 52
genes only concerns common genes. The 52 genes from lit-
erature are related to the proteins and pathways that
contribute to the cancer pathogenesis. For example, the
pathway of RAS is among the most frequently mutated
pathway in cancer, which affects the mechanisms such as
apoptosis, DNA repair and multiplication. We have in-
corporated this in the Methods section to clarify.
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