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Proteorhodopsin genes in giant viruses
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Abstract

Viruses with large genomes encode numerous proteins that do not directly participate in virus biogenesis but
rather modify key functional systems of infected cells. We report that a distinct group of giant viruses infecting
unicellular eukaryotes that includes Organic Lake Phycodnaviruses and Phaeocystis globosa virus encode predicted
proteorhodopsins that have not been previously detected in viruses. Search of metagenomic sequence data shows
that putative viral proteorhodopsins are extremely abundant in marine environments. Phylogenetic analysis
suggests that giant viruses acquired proteorhodopsins via horizontal gene transfer from proteorhodopsin-encoding
protists although the actual donor(s) could not be presently identified. The pattern of conservation of the predicted

infected protists.

reports section.

functionally important amino acid residues suggests that viral proteorhodopsin homologs function as sensory
rhodopsins. We hypothesize that viral rhodopsins modulate light-dependent signaling, in particular phototaxis, in
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Findings

Many if not all viruses encode proteins that counter-act
host defense or more generally affect the functions of
cellular systems, presumably tweaking them in a manner
that favors virus reproduction. Even viruses with small
genomes, for example picornaviruses, typically encode a
‘security protein’ that modifies the host translation sys-
tem in favor of viral RNA translation [1]. Viruses with
larger genomes encode multiple proteins with dedicated
functions in the modulation of virus-host interaction at
different levels rather than direct roles in virus
reproduction [2-5]. A striking example is the presence in
numerous cyanophages of genes encoding multiple pro-
teins involved in photosynthesis including complete
photosystems I and II [6-8]. These phage-encoded pro-
teins apparently support photosynthesis in infected
cyanobacteria and hence promote phage reproduction
[9,10]. Here we report the presence in genomes of giant
viruses infecting marine unicellular eukaryotes of genes
that encode another light-dependent energy-transduc-
tion system, proteorhodopsin. We investigate the origin
of these genes and discuss their possible roles in the cel-
lular functions of infected protists.
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Bacteriorhodopsins encoded in the genomes of Organic
Lake Phycodnaviruses and Phaeocystsis globosa virus and
their abundant homologs in marine environments

In the course of comprehensive comparative genomic
analysis of the giant viruses in the families Mimiviridae
and Phycodnaviridae, our attention was caught by 5 viral
proteins [one from the nearly complete genome of Or-
ganic Lake Phycodnavirus (OLPV) 2, three from frag-
ments of other OLPV genomes [11], and one from the
more distantly related Phaeocystis globosa virus (PGV)]
that showed significant sequence similarity to proteorho-
dopsins from marine bacteria, in particular the most
abundant bacterium in the ocean, Pelagibacter ubique.
The sequences of these proteins were up to 28% identi-
cal to proteorhodopsins (expectation value <e-05); all
viral proteins with similarity to proteorhodopsins are
currently annotated as ‘hypothetical proteins’ in Gen-
Bank although for two of the OLPV proteins the similar-
ity to bacteriorhodopsins is pointed out in a note.
Proteorhodopsins represent a distinct, comparatively
simple phototrophic system that is of crucial importance
in marine ecology [12-14]. These proteins belong to the
broader family of bacteriorhodopsins (or Type I rhodop-
sins) that originally were discovered in Halobacteria
(Euryarchaeota) and subsequently identified in diverse
bacteria as well as protists and fungi [15]. To our know-
ledge, proteorhodopsins (or any other rhodopsin
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superfamily members) have not been previously detected
in viruses, so we were interested in a detailed analysis of
these sequences.

Comparison of the putative viral proteorhodopsins to
databases of environmental sequences revealed numer-
ous highly similar sequences, some more than 50% iden-
tical and with e-values as low as e-64. The much greater
similarity between the putative viral proteorhodospins
and the environmental sequences, all coming from the
Global Ocean Survey (GOS) [16], than between any of
these sequences and bacterial proteorhodopsins suggests
that the detected environmental sequences are also of
viral origin. We collected a representative set of putative
viral, bacterial, archaeal and eukaryotic bacteriorhodop-
sins and constructed a multiple alignment of these
sequences (Additional file 1). Inspection of this align-
ment indicates the conservation of all 7 transmembrane
helices that were also independently predicted in the
viral proteins (Figure 1 and Additional file 2). Further-
more, the viral sequences contained the invariant lysine
residue that is involved in retinal binding as well as the
aspartic acid that serves as the proton acceptor; the pro-
ton donor glutamate is not conserved; the position
known to be important for spectral tuning [17] is occu-
pied by a methionine as it is in some of the proteorho-
dopsins (Figure 1). The lack of conservation of the
proton donor carboxylate indicate that viral proteorho-
dopsin homologs are sensory rhodopsins rather than
light-dependent proton pumps [18,19]. The presence of
a hydrophobic residue in the spectral tuning position
suggests that viral proteorhodopsins absorb light in the
green part of the spectrum [17].

Origin of the viral proteorhodopsins

We used the alignment shown in Figure 1 to construct a
phylogeny of bacteriorhodopsins (see Additional file 1
for the full alignment). In the resulting phylogenetic tree,
the proteorhodopsin homologs from giant viruses and
their environmental homologs form a strongly supported
clade with two distinct subclades, each with numerous
environmental sequences (Figure 2; see Additional file 3
for details). Taking into account the much higher se-
quence similarity between the viral sequences and pro-
teorhodopsins as opposed to all other groups of
bacteriorhodopsins, the root position can be inferred be-
tween two major clades one of which consists of viral
and bacterial proteorhodopsins and the other one
encompasses the rest of prokaryotic (halorhodopsins,
sensory rhodopsins, xenorhodopsins and others) and
eukaryotic Group I rhodopsins (Figure 2). This tree
structure implies that giant viruses acquired proteorho-
dospin genes via horizontal transfer from bacteria or
more likely from proteorhodospin-encoding eukaryotes.
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Notably, Phaeocystis globosa, the protist host of PGV,
encodes two closely related rhodopsins. However, these
rhodopsins confidently group within the eukaryotic
branch of Proteorhodopsin Group II (Additional file 4)
and accordingly are not the ancestors of the proteorho-
dopsins of PGV or other viruses. In the tree shown in
Figure 2, the viral rhodopsins join the proteorhodopsin
clade at its base which at face value seems to suggest an-
cient acquisition of the proteorhodopsin gene by ances-
tral giant viruses. However, we cannot rule out that
some of the environmental sequences in the ‘viral’ clade
actually come from planctonic protists and represent the
(still uncharacterized) source(s) of the rhodopsin genes
in giant viruses.

Implications for virus-host interaction in giant viruses

It appears likely that proteorhodopsins of giant viruses
modulate phototrophic process in the infected protists.
Although proteorhodopsins originally were discovered
and characterized in bacteria [13] and subsequently in
mesophilic Archaea [20], more recently, members of this
family have been identified in several dinoflagellates [21-
23]. Notably, in the marine dinoflagellate Oxyrrhis mar-
ina, proteorhodopsin is the most highly expressed nu-
clear protein, suggesting a major physiological role(s)
[21]. Database searches also indicate the presence of two
closely related proteorhodopsins in the prasinophyte P.
globosa (Figure 1 and Additional file 4). There are no ex-
perimental data on the functions of proteorhodopsins in
these unicellular eukaryotes. However, by analogy with
the well characterized bacterial proteorhodopsins [24], it
appears likely that those of the eukaryotic proteorhodop-
sins that possess the proton donor carboxylate function
as light-driven proton pumps involved in ATP synthesis,
particularly under oligotrophic conditions, whereas
those that lack the proton donor perform sensory func-
tions, in particular in phototaxis [21,25]. By this token,
the proteorhodopsins of P. globosa are predicted to pos-
sess proton-pumping activity (see Figure 1; the second
paralogous sequence from P. globosa is nearly identical
and is not shown).

Viral proteorhodopsins that are predicted to function as
sensory rhodopsins could affect signaling and in particular
phototaxis in the infected protists, perhaps stimulating re-
location of the infected protists to areas that are rich in
nutrients required for virus reproduction. Complete se-
quencing of the genome of P. globosa and the still uniden-
tified hosts of OLPV (most likely, also prasinophytes [11])
will show whether the putative viral sensory rhodopsins
complement a pre-existing host function or confer a func-
tionality that is new to the host. Given that P. globosa is a
dominant component of marine phytoplankton and that
its population dynamics is substantially affected by viruses
[26], viral proteorhodopsin homologs described here,
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Helix B Helix C Helix D Helix E Helix F Helix G
hhhhhhhhhhhhhhhhhhhhhh

viral group I 1 2 3 q
PGV 357289866 41 KDALLLENIVQFIEAIFYLWFIYFYK 5 7771DIAKYRYYDWFL-TMILSVIIYF 25 ELWFYNFNMLIIBYLOEINIISI 3 TLIGFYFFGLLFYKMFKYYV 3 KKNYLLFFLMFFIWGLY@IAALF 5 NAFYNILDIFSKNFF'LFL 218
OLPV 322511333 38 REILILELIVQIIEFIFYIWLIITLQ O SINEDITYVRYFDWVI-VMLLTTVYFF 24 -ICLSNFFMLLIGYLEETKQINK 3 LFGGSFFLFLTFYLLYVKYT 3 WMNYIVFYFMFLVWFLY@FAFME 5 NQMYNILDIVSKNI‘{IIFI 211
OLPV2 322510906 38 RDILILETIVQCIEFIFYIWLVISLE 0 KIKYDVTYVRYFDWEWEBBVMLLSTVYFF 23 -IVISNFFMLLFEYLEEIKKMHK 3 LVLGFIFFIITFYFIYDKYV 1 PQTLWLFIAITFIWFLYBIAFIL 0 -SYSKKIQCTIF 195
env138806003 (9) 43 QDILSLEVVVQIIEASFYIWVMFALS 0 —NLESMTPRRYIDWVI-TMLLSTIIFM 28 KIFIYNALMLLF@FLEETNMIDK 3 ISIGFVFFYLSFNTIYNEYA 3 IEGTQLFKFLITVWGLY@IAAML 5 NISYNLLDIISKNFY@LFI 220
env142947874 (2) 46 KKALEWEYYVSIIEFATYLWIGAVLY 0 28 KILAGNNLMLLABFLEETKRINH 3 LFAGLFFFVFQFYTMYEELA 3 NFGTDFFVGLVIVWILYBVAYMT 5 NIMYNLLDLVSKNAF@LYL 222
env136714359 (2) 47 KEILAIENIVQIIEFTEYFVIATYNT 0 27 -LFLNNFFMLLC@ILVEREMLSM 4 -PIGFFFEYQTF-ATIRKFT 3 PTNDKLYKFLVVVWGLY@FAAML 5 NIAYNLLDLVSKNFY@LYI 221
env136666168 (2) 38 NELVILELIVQIIEASFYVWMVTREN 0 27 KVSILDWLMLL L KHVFSF 3 TLIGFIPFFLMFYLIYKNFA 3 KTGQTIFWYFTAVWAIY@VAAVL 5 NTIYNILDLFAKNFF@VFL 214
env140399515 43 HDVLIIESIVQLVEGLFYIYIAYAMK 1 IKEZGDIASRRYFDWVI-IMLLSTIMYM 27 -IGLYNLGMLEF L INMLPK 3 VPIGFGFFGLSFYEIWDKFA 3 DKTRKLYYFLISIWGLY@VAAIM 5 NIMYNSLDIVAKNFY@LFI 220
env139447334 49 REILILETIVQFIELVYYVWLVSKFS 0 SIQYD\ITSTRYFDWVL-IMLITTAVFM 28 KIIGANALMLLF I KQKVSR 3 FLEGTLFFLMTFGFLYSEFV 3 IVNRGLFWFMLVVWGLY@VAYCL 5 NVGYNFLDILSKNFYBFFL 227
env143847758 55 KDVLILETIVQFIEFIFYIILIYYFS 0 SLKENITHLRYYDWVI-LMLISTAFYF 25 SMISFNTIMLLFBYL IKKLNK 3 VILGSIFFFLSFNQLQTFVG 2 QINQTIYYIMFSLWALY@VASIM 5 NTSYNILDLFSKNFY@LFL 22¢
env136217742 51 KDILGLETIVQFVEGIFYIYIISSLR 1 MRSNVITKRRYLDWII-MMLLSTILYM 27 -MFLFNILML FLEETGILVK 3 IPIGFIFLFLSENIMYKNYV 3 DINKKIFMLMIIIWSMY@FAAMS S5 NISYNILDIISKNFY@LYL 228
env143407566 40 GKILMVEN LIEIVFYGWLMF 'L 0 KPEGEITWVRYVDW r-AMLFSLVCFM 25 -IFVANFLMLLF@FLBELKIGNY 3 MILGFIAFFVSFWTIFTDFM 3 LVNKVLFYSTFALWLLY@VAALM 5 NIFYNILDIFSKNIMBLAL 214
viral group IT
OLPV 322511359 20 RHILNLETCISVVEAFFYSNFIGKLE 1 INYEEINLNRYVDWAI-IMLLVLVLAF 17 -ILGMNYGMLGTEYL IGVIHK 3 TVLGFLFFGGLFYKLNTLRT 2 ASNDLLYGAFFVLWALY@VFYOM 5 NVGYNVLDLESKCFV@IYF 18€
env135537302 (18) 92 RHILNLETCISVVBAFFYSKFVSDIE 8 LNYKDIVVQRYTDWMI-IMLLVLVLAF 15 -ILVFNFGMLL IQD 4 NLGGFIFFFLLYGFIYLKFI 5 FDNMIIFLSFIILWFEFY@VEYPM 5 NIGYNVLDLESKCEV@IFF 267
env136605736 1 -HVLNLETCISIIBGYFYSLFLSQID 11 ***VQLTQTRYADWSI-IMLLVLCAVL 15 -IIGLNYLMLL GVLSH 3 LIPGFGAFFGMFYLIYVNYV 5 SANYNLFYIYLGIWSLY@VVFMF S5 NIFTNILDAIAKSGIGLGL 174
env136189461 64 RHIMNLETCISVVBGYFYSQFIDKIN 4 IDFKDINDTRYTDWFI-LMLLVVLISL 15 LVVVLNICMLL IISK 3 CLVGFLFFIVLFGFIYFQYV 5 LFNYVFFGIYVVIWSLY@LVYLL 5 NMAYNVLDVSAKCFV@LGL 235
Proteorhodopsin group I
eBACredZZE04767906693 62 QTSLSVISLVTLIBAVHYFYMREVWV 0 ETGESPTVFRYIDWII-LQMIEFYLIL 12 RLLVGTLVMLI L GVINA 3 FIIGMAGWIYILYEIFAGEA 13 MAFNACRMIVLVGWAIYBLGYLF 12 NLIYNLADFVNKIAF@VFI 241
env134333280 (748) 151 KTSLVVSGLVTFIBAVHYFYMRDVWV 0 MTGETPTV‘{R!IDWLL-LLMIEFFLIL 12 RLLIGTLVML' L GYMDV 3 FIIGMLGWFYILYEIFAGEA 13 SSYNTMRWIVTIGWAIYBLGYVL 20 NIVYNLADVVNKIAF@LLI 338
env143531583 (29) 108 RTTMTISALIVGIBAFHYYYMRGVYV 0 DTQVVSTEYRYMDWII-LMALKFPSLV 17 ICFVGAIIMIGF@YL DIIAN 10 GWAMILVATGLPFGLYDGLG 11 WSTDALRTFILVGWIIYBIGYLF 13 GVLYNIADMINKIGF@VVA 298
env142932331 (2) 35 RRGVYISALVTGIBYYHYNKMTASYA 1 NPGEFDTGLRYVDWVLEMBLMEVEIIAIT 12 -WGFAGLVMIGABYFBEISEASS 6 FVIAMAAYVYLMLOLONEGE 7 VQFNKIKNLIFVGWVIYBLGYIS 11 ELLYNVADIINKVGLEVLV 210
env134502928 (3) 95 RSTMVCAGLVCGIBCFHYFKMTHVYQ 1 SGGQFPTALRYIDWLF-LMLIKFPLLL 12 -LVTLDIGMI F I} TSPVAS 6 FLVACVLELLIVATLYTGLG 11 KALNTMRLFILIGWAIYBIGFLM 9 EIFYNVADVINKVGF@LAA 272
env143881825 (2) 63 RITATYAGAITFIBAIMYWIMTDLVG 9 AAIQGTMPYRYIDWLL-LLLVEFGLIV 12 RIVIADIIMIVTEYLEEVGTEGE 6 FVISSLAWFYIVYAVFQVKT 8 RAVKVMRNFVMVGWAIYBIGTAT 18 AIVYVIADVLNKVGF@MVA 25%
Bf_Exisil72057442 41 RSTATVAALVTEVBAIHYYFMKDAVG 9 ***GFPTEIRYIDWLV.LLLVKFPLLL 12 KLVIADVIMI YIBESSINIA 11 -LIGCFAWIYIIYLLFTNVT 11 DALLKMRLFILIGWAIYBIGYAV 13 ELIYNFADLTNKVGF@LIA 232
Proteorhodopsin group IT
Bp_Citsp341615962 73 RLVPILSAVVMASHGLSLLOEFSLWK 14 ENETFTNAYRYGNWTI-ILLTQLAIAM 12 RMGVPAVLMIWT@LY@QFGEVGD 7 GVVSSIFFLWLILEVRQTLI 11 PWPNNLWWEFLATWGLYBIAYAL 13 QGIYSLADIASKLIY@IIL 26¢
Bb761111374596330 119 QMSNILSAVVMVSEFLLLYAQRENWT 16 NGDLFNNGYRYLNWLID.MLLFQILFVV 12 QFWFSGAMMIIT@YI@QFYEVSN 7 GAISSVFFFHILWVMKKVIN 11 KILSNIWVLFLVSWFLYBGAYLM 19 QLTYTIADVCSKVIY@VLL 322
EdiTrur529762447l 48 RLSSTLSAVVMVSHEFLALYQLHQTWL 12 GATAFNNGYRYINWSID.ILLTQLLIVM 12 QFVVAGLAMIYT@Y FYEATD 7 GAISTAFFLWILVLVRRTIF 11 GLMRGVWWVLLGSWLLYBGAYLM 13 QISFTVADVVSKVIYBVML 242
Ba_CanRh224384114 46 RIAVM T IBAYHYFRMFDNEFS 12 ----YNVGYRY uqu-LLLVELVAVL 12 RLVPAAARMIVL@YP@DAKLDIW 7 GLLSTIPFLYILYVLFIELG 11 KKVKILRLLLIATWGVYBITFIL 18 EVGYSIADILAKCLF@LII 241
Bo_Isopa320105020 88 RPAMMVSGLVVSIECYHYFRIFESWE 12 TGAVENDAYRYADWLLEWBLLMVELIAVL 12 RLSVAAFFMIAL IAKYEA 7 FVLSMIPFLYILFVLLTELT 11 GYISAARLIVLVSWCEYBIAYL- 16 QVGYTIADIVAKAVEGVYI 284
BaiGeoobZB4992054 92 RPSSYAALCLAAVETVAYLLLYLDWD 13 EEARTTESTRYIDWSI-LLTVELLAVC 12 STMAAAFLMIVT@YLEAQVLDQG 9 GLISTAFFAYLYVALIGAVR 11 VSLRNATIVLLSSFGIYBLVYAV 14 QVGYSAADVVAKIGF@VLV 290
Ebisalru83815260 46 RISMMVSALVVFIBGYHYFRITSSWE 12 TGELFNDAYRYVDWLL-LLTVELVLVM 12 KLGFLAALMIVLEYPEEVSENAA 8 GFLSTIPFVWILYILFTQLG 11 TLLGNARLLLLATWGFYBIAYMI 19 QVGYTIADVLAKAGYBVLI 247
EpiPhsg1348167211 39 KTAMTVTGLVTFIBAYHYLRIFNSWV 22 TGKPFNDA‘{RYMDWLL-LLLIEIIFCC 12 ALGVSSGLMIILJ LIIEGD 7 WFAAMIPFLYVVYTLLVGLK 12 AMLTQVCYATVISWCTYBVVYLF 14 QLGYCVSDIISKCGV@FLI 245
Ec_Pyrlu27450749 46 RTALTITGLVTAIBTYHYVRIFNSWV 17 LGAPFNDAYRYVDWLI-LLLIELILVM 12 NLGVASAVMVALEYPEEIQDDLL 5 WAMAMIPFYYVVVTLVNGLS 11 SLVVTARYLTVISWLTYEGVYII 14 QVGYSVADVVAKAVF@VLI 244
Ec_Polgl333440757 46 RTALTITGIVTLIBTYHYIRIFNSWS 17 TGAPFNDGYRYVDWLLEWBLLLIELILVM 12 KLGLASALMVALEYPEEIQEDLA 5 WCLSMIPFCYVVETLAVGLA 12 SLASAARYLTVLSWCTYBFVYMV 14 QVGYSLADVLAKAVFEVLI 245
Ecioxym3324096614 46 RTALTITGIVIWIHTYHYFRIFNSWV 16 SGTPFNDAYRYVDWLL-LLLIELILVM 12 KLGVASAVMVALEYPEEIQENLA 5 WALAMIPFAYVVFSLLVGLG 11 GLVSAARYLTAVSWLTYBFVYII 14 QIGYSVADVMAKAVF@VLI 242
Sensory rhodopsin
Bb_Salru83814238 31 GLDFDYVWAIPGIBAFMYLLMTFDVG 6 ***YHVPIPRYIDWAL-LLVGYTAYIA 9 -TALADFMMIVF@LGEVVFSSTA 4 FGLSSACHLTLLALLYGPVR 11 RLARLLLNYVGLLWLAYBLVWLF 12 AVIISYLDVTAKVPEVYFI 208
Ae_Halma55377431 34 SSFYYLPPIHTSVEGAAYVAMALIAG 3 GDTVSITTLRFADWIV.IITYYLARLA 8 LAVAANVVMIGV@Y-@FVSMSGS 5 FAVSTVAFIGLLYLYIKTFA 11 SLFQSLRDLTVVTWSLYBVVYFL 13 NFLVAVLDTIAKVGFMSIL 212
Asiﬂalsp15790610 35 QSALAPLAIIPVFEGLSYVGMAYDIG 3 VNGNQIVGLRYIDWLV-ILVGYVGYAA 9 -VMVADALMI. TDGTL 4 FGVSSIFHLSLFAYLYVIFP 10 GLFNLLKNHIGLLWLAYBLVWLF 13 ALTYVFLDVLAKVPYVYFF 212
Aeiﬂalmu257383720 32 RTRYAVLVSIPGIBIFAYAIMALGIG 3 TGTHTVWIPRYVDWLI-LNVLFLGLFA 9 -LVGLQVLTIVF@F IGGLL 4 FALGGLAFVGVGYLLYGAIT 12 GVYETLRNFVVVLWGIYBIIWIL 13 ALWAYLDVVTKVGF'LLA 211
AeiNatph93279472 34 RYYVTLVG-ISGIBAVAYVVMALGVG 3 VAERTVFAPRYIDWIL-LIVYFLGLLA 9 -VITLNTVVML PGIE 4 FGMGAVAFLGLVYYLVGPMT 11 SLYVRLRNLTVILWAIYBFIWLL 13 VALIVYLDLVTKVGF'FIA 211
Bacteriorhodopsin
Ae_Halspl5790468 53 KKFYAITTLVPAIBFTMYLSMLLGYG 12 -----IYWARYADWLHBEBBLLLLDLALLV 9 -LVGADGIMIGTELVEALTKVYS 5 WAISTAAMLYILYVLEFGFT 11 STFKVLRNVTVVLWSAYBVVWLI 13 TLLEMVLDVSAKVGHBLIL 23€
Re_Halar2499386 38 QKFYIATTLITAIEFVNYLAMALGEG 9 --EHPTYWARYSDWLFIMEBLLLYDLGLLA 9 -LVSLDVLMIGTELVETLSPGSG 11 WGISTAFLLVLLYFLFSSLS 11 STFKTLRNLVIVVWLVYEVWWLI 13 TAGFMVIDLTAKVGHEIIL 227
Halorhodopsin
Ae_Halspl4194474 80 RLIVGATLMIPLVELSSYLGLVTGLT 13 GEDVLSQWGRYLTWTLEEBMILLALGWLA 9 -VIAADIGMCLTELABALTTSSY 6 YLVSTAFFVVVLYALLAKWP O DIFGTLRWLTVILWLGYBILWAL 14 SWGYSLLDIGAKYLFEALL 26¢
Bb_Salru83814666 82 KLITMSTLMISVV.ISSYMGLASGLT 13 GQEVLSLWGRYLTWAF-FILLALGLLA 9 -AIVLDVFMCL' AIALTTSSH 6 YALSTAFFVGVLYYLLVEWP 9 DIFSTLQWMTIVLWIGYIWWAL 14 SWAYSGLDIFAKYAF'IIL 230
Ae_Halma55378428 82 KLIWVATMLVPLV‘ISSYAGLASGLT 13 GQEVLSPWGRYLTWTF-MILLALGLLA 9 *AITMDIGMCVTILAIALITSSH 6 YGISCAFFVAVLYVLLVQWP 9 EIFGTLKILTVVLWLGYIILWAL 14 SWGYSGLDILAKYVF‘FLL 248
Xenorhodopsin
Bc_Cyasp218440842 34 QYEYLIAIFIPIWSGLAYMAMALNQG 3 SANQIAHYARYVDWIVIMBBLLLLALSWTA 13 -LMSTQVVVITTELIEDLSERES 5 YICGVVAFLIVLWGIWGPLR 11 VLYNKLLIYFTVLWVCYBLVWII 13 TFLECLLPFESKVGHBFLD 217
Ae_CanN3339757013 50 QKFGIIHFFIVVWIGLMYTNFLNGSV 0 ——--LSDFAWYMDWMV.LILLALGLTA 14 —LLGLEFTLVITILLIQLQGSIY 1 YYIGVILLLGVVYLLAGPFR 11 RAYKLLAGYIGIFFLSYITVWYI 18 SIALWLPFFCKQVY.FLD 228
Bp_Metspl70738878 33 ETDGILHGIVPLIBAASYLAMACGQG 12 --QWDFYFARYIDWIFEBBILLYALATDA 13 -MLAADVLMIATELEFGASATAW 5 YAVSCGAFLGVYYVIWVPLL 11 AAFRRNAAFLSVVWLIYBLVLIV 13 TALIAVLDVVAKVVEBLMA 223
BpiPansp3814063OE 73 HTLMHAS-—VPFIIATAYLAMAFGFG 4 DSGSTVYLARYADWSI-ILLAGLVMLA 16 —IIVLDVMMIITILVISLAETAA 5 YLWSCAAFLGVVYLLWGPLR 11 GAYNKNVALLTVVWFIYIIVFLV 13 VWAFLVLDIIAKVFYIFYA 258
Bhiktera298250763 35 KHFYYLTRLITLIIATLYMTMASGYG 3 QNGRVILFGRYIDWVI-LLLMNLALIA 14 *MIAADVYMIVSILGISLIRSNF 4 FAVSCAGFLAVLYFIVVKLT 11 RHYSTLSIMLIALWVCYIIVWIL 13 VVL‘{P«VLDILAKGAF‘FVL 218
Eukaryotes
Em_Cyapa256681420 110 RRFHYITTLYSGISTMAYYCMARGQG 13 SPYRVFYYARYIDWFI-LIILNLCLLA 9 -LALSGMLMVGT@L LSITGT 4 FGISNMCFLPIVVAWVTVLR 11 KTYNILIIISIIAWFAYRIIWII 12 IVSYAVVDTFSKALEGVIL 297
Eh_Crysp74476774 61 RKYYFCNTFICGIMTFAYFAMLSGQOG 4 SGCRQFFYAHYVDWLI-LIILNLGLIA 9 -VCGADVLMII YV TT 5 YLFGIGMFLPIIYSLARTFR 12 ELYGKVAWLTIIIWCFYBIVWLF 12 TVAITIMDVIAKCVESFMI 241
EhiGulth74476772 56 RKFYYINAFVCGVESFSYFAMISGMG 4 MGCRQMFYVRYIDWFI-LMILNIGLLA 9 -IMGADMGMIF LVPT 5 FVIGLVVYIPVVIALVRIFR 12 ELYGKVSLLTVVSWSVYBFVWLL 12 SILYALLDVTSKCFESFMI 23€
Ecioxyma327335365 53 QRYRLVTASITIIBATFYFFMAQGYG 3 9 -LLVADVLMITVEF NPDYGH 4 FAVSMAFFLLTLYIIGEGML 13 RLMKTLLWLTVLIWCTYBLYFVL 17 VLLYGLSDVVAKSVE@FIL 237
Ec_Oxyma324096620 42 KKYYYVSAAILAVEACAYYFMAWGYG 12 ***KHLFWLRYLDWLI-LLLLDLALLA 9 -IILMDMLMITAGYIBASTEQFV 3 F MVFFILVLGYLGDGVL 9 GTARNLFWLTVLIWCTYBLYFVL 11 ILCYGISDVLAKVVESLVL 221
El_Spore343429430 61 RAFHYLSAAILATHSVAYFSMASDLG 19 RPTRSIWYARYIDWTI-LLLLEILLVS 9 -TIFFDLVMIIT@LIBALVESTY 4 FTMGSVAMFYVFWVIYGPGL 11 KSYLHSSLVLTVLWTLYBIAWSI 12 MVFYGVLDLLAKPVFBLFH 254
E9_Orysa34559256 90 RLYHVITTLILIFESISYFAMATGHG 19 HGRTPVFWARYVDRAI.LILLHDLSLLA 9 -AVVADVIMILTELFEAFGSEGT 6 YAISCISFLVVIWHLAVNGR 11 SFFLAIAGYTLVLWTAYBIVWGI 12 IIAYAVPDVLAKPIF@LWL 285
EliM1x05358059197 67 RIFHHVTFFITATHAVSYYCMASGMG 12 REVYYARYLDWLI-LLLLDCCLLA 9 -IILADIGMILTELL 'VDDGRT 5 FTISCLFFLYVLWGLLFSAR 11 KLYLGIAVYTAVLWIAYBVVWAF 12 VLAYAILDIARKAVF@GWL 251
El_Treme392575188 83 RVFHWLSAAVLTIEMVSYLAMATGMG 16 HYFREVYWARYVDWLF-LLLLSLALLA 9 -TIGADVFMIVT@LLSTIHSSHS 10 YAVSCVGEVVIWWILLSGGL 11 GLFHLLGVMTFHLWLAYBIVFAL 12 IIAYGVLDVAAKLGF@YML 27¢
Figure 1 Conserved sequence blocks in the rhodopsin superfamily. The conserved blocks are separated by numbers that indicate the length
of less well conserved sequence segments which are not shown (see Additional File 1). The alignment columns are colored on the basis of the
respective position conservation throughout the superfamily: yellow background indicates hydrophobic residues (ACFILMVWY), red letters
indicate polar residues (DEHKNQR), and green background indicates small residues (ACGNPSTV). The transmembrane helices are indicated
following transmembrane helix prediction for PGV sequence (helix A is not shown; see Additional File 2 for all 7 predicted transmembrane
helices). The functionally important residues are numbered: 1, proton acceptor; 2, position important for spectral tuning; 3, proton donor; 4,
retinal-binding amino acid residue. Each sequence is denoted by the corresponding taxon abbreviation followed by the species abbreviation and
GenBank Identification (Gl) number. Taxa abbreviations: A, Archaea; B, Bacteria; E, Eukaryota; Ae, Euryarchaeota; Ba, Actinobacteria; Bb, Bacteroidetes/
Chlorobi group; Bc, Cyanobacteria; Bd, Deinococcus-Thermus; Bf, Firmicutes; Bh, Chloroflexi; Bo, Planctomycetes; Bp, Proteobacteria; £9, Viridiplantae; Ec,
Alveolata; Eh, Cryptophyta; El, Opisthokonta; Em, Glaucocystophyceae; Ep, Haptophyceae. Species abbreviations: are listed in Additional File 3.

regardless of their exact role(s) that remains to be eluci-
dated experimentally, could be major players in the ocean
ecology.

Conclusions

Proteorhodopsin homologs encoded by giant viruses be-
long to a distinct proteorhodopsin subfamily that add-
itionally includes numerous uncharacterized sequences
from marine environments that are likely to be of virus
and/or eukaryotic origin. The viruses probably acquired
proteorhodopsin genes from unicellular eukaryotic hosts

although the identity of the donors remains unknown.
These proteins are predicted to perform light-dependent
sensory functions, potentially altering the behavior of
the infected protist host, e.g. by inducing phototaxis and
perhaps stimulating the host relocation to nutrient-rich
areas.

Methods

Protein sequences were retrieved from the non-redundant
database at the National Center for Biotechnology Infor-
mation (NIH, Bethesda). Reference sequences for halo-,
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Figure 2 Phylogenetic tree of the rhodopsin superfamily. Branches with bootstrap support less than 50 were collapsed. Several large clades
are shown by triangles with the number of the collapsed branches shown within the triangle. Numbers in parentheses represent number of
environmental sequences clustered into the branch. Each sequence is denoted by the corresponding species abbreviation and GenBank
Identification (GI) number. Abbreviations: OLPV, Organic Lake Phycodnavirus; OLPV2, Organic Lake Phycodnavirus 2; env, environmental sequence
(marine metagenome); Ba, Actinobacteria; Bc, Cyanobacteria; Bd, Deinococcus-Thermus; Bh, Chloroflexi; Bp, Proteobacteria; Cyasp, Cyanothece sp. PCC
7424; Ktera, Ktedonobacter racemifer DSM 44963; Metsp, Methylobacterium sp. 4-46; Pansp, Pantoea sp. Sc1; Pseps, Pseudomonas psychrotolerans
L19; Rubxy, Rubrobacter xylanophilus DSM 9941; Sphsp, Sphingomonas sp. PAMC 26617; Trura, Truepera radiovictrix DSM 17093. Expanded subtrees
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bacterio-, xeno, and sensory rhodopsins were taken from
[27]. The non-redundant protein sequence database was
searched using the PSI-BLAST program [28], with default
parameters and the predicted viral proteorhodopsin
sequences used as queries. The reported results reflect
searchers  performed on 13-15/08/2012. Marine

metagenomics blast hits were clustered before the align-
ment by blastclust (http://www.ncbi.nlm.nih.gov/Web/
Newsltr/Spring04/blastlab.html); a representative (the
longest) sequence from each cluster was taken. Protein
sequences were aligned using the MUSCLE program with
default parameters [29]; columns containing a large
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fraction of gaps (greater than 30%) and non-homogenous
columns defined as described previously [30] were
removed from the alignment. The resulting 160-column
alignment was used to construct a maximum likelihood
phylogenetic tree using the FastTree program with default
parameters (JTT evolutionary model, discrete gamma
model with 20 rate categories) [31]. Transmembrane heli-
ces in proteins were predicted using the TMHMM pro-
gram [32].

Additional files

Additional file 1: Secondary structure prediction for viral
proteorhodopsin homologs.

Additional file 2: Multiple alignment of bacteriorhodopsins used
for the construction of the phylogenetic tree in Figure 2.

Additional file 3: Supplementary data for Figure 1 and Figure 2.

Additional file 4: Expanded phylogenetic trees for Proteorhodopsin
groups | and II.
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