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reduces neural death and damage volume
after MCAO by modulating microglial reactivity
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Abstract

Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reac-
tive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral
ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes
that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such
reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected
by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR)
activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined
the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after
ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced

the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings
indicate that the pharmacological inhibition of mTORCT in the acute phase of ischemia may provide an alternative
strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.
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Introduction
Neuroinflammation is a Central Nervous System (CNS)
reactive response triggered by infection, trauma, auto-
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neuronal death [6]. The different degrees of damage
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in the ischemic area allow to distinguish two different
affected regions: the infarct zone or core, and the peri-
infarct region. Core is the more affected region, char-
acterized by a drastic reduction of blood flow, whereas
peri-infarct region that surrounds the core, receives a
sufficient supply of nutrients to maintain certain cellular
functions [7]. It has been described that neuronal damage
in infarct zone is almost irreversible given that is related
with high rate of necrosis. By contrast, the less damaged
peri-infarct zone is potentially recoverable with an early
intervention [30]. The only therapeutical approxima-
tion approved in acute phase is reperfusion, however, it
does not reduce the consequent neurodegeneration [51].
Therefore, it is necessary to find alternative treatments
to reduce ischemic damage and improve the beneficial
effects of reperfusion.

Neuroinflammation is an early event after cerebral
ischemia, being microglia a leading player. It has been
described in murine models that reactive microglial
response, begins 30 min after of the onset of ischemia
[46]. Reactive microglial involves functional and mor-
phological changes that drive a wide range of microglia
phenotypes from pro-inflammatory to anti-inflammatory
states [40]. During the acute phase of cerebral ischemia
microglia release inflammatory factors that may generate
a proinflammatory environment that aggravates neuronal
damage [12, 54]. Therefore, understanding the molecu-
lar mechanisms underlying this early reactive microglial
after ischemia could help to protect neurons and main-
tain brain function.

One of the main players controlling microglial func-
tional/phenotypic changes is the PI3K/Akt/mTOR path-
way [5]. mTOR is a ubiquitous serine-threonine protein
kinase, highly conserved, formed by two multiprotein
complexes: mMTORC1 and mTORC2. Both mTOR com-
plexes (mTORCs) coordinate a wide range of anabolic
and catabolic responses, so it is considered a pivotal
player in the cellular homeostasis [26, 51]. Consequently,
mTOR signalling dysregulation or dysfunction signifi-
cantly affect CNS integrity [20]. Several in vivo studies
of brain ischemia have reported a decrease in mTORCs
activity after ischemic damage, accompanied by neuronal
death and neurological deficits [28, 32, 42]. The increase
in mTORCs activity in ischemia promotes neuronal sur-
vival and diminishes ischemic damage [39, 41].

However, inhibition of mMTORCs activity after or before
ischemia using in vivo models has shown controversial
results. Some reports have demonstrated detrimental
effects after mTORCs inhibition while others not [2, 4,
24, 28, 55]. The involvement of mTOR along different fac-
tors such as the timing of the study, the degree of dam-
age or the response of each cell type to ischemic injury,
could explain these results. Thus, it is necessary to better
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understand the role of mTORCs in all backgrounds to
understand these controversial reports.

In this study, we have evaluated the role of mTOR
activity after cerebral ischemia focusing on microglial
response during the acute phase, by using the mTOR
inhibitor rapamycin. Our data demonstrate that rapamy-
cin administration both before and after MCAO, reduces
the ischemic volume and neuronal loss and attenuates
microglial response. Specifically, rapamycin reduces the
levels of the pro-inflammatory microglial phenotype and
promotes neuroprotection. These results suggest that
the pharmacological inhibition of mTORC]1, during the
acute phase of ischemic stroke could be an alternative
protective strategy to reduce neuronal damage through
the attenuation of the neuroinflammation mediated by
microglia.

Material and methods
Animals and treatments
Swiss mice (12 weeks old, weight 35-45 g) were housed
in the Animal Facility of U1237 (GIP Cyceron) with
access to food and water ad libitum under a 12-h light/
dark cycle in a temperature-controlled environment.
All care and experiments were performed following the
ARRIVE guidelines (www.nc3rs.org.uk), including blind
analyses of the samples. A stock solution of rapamycin
at a concentration of 20 mg/mL in ethanol was prepared.
Rapamycin was diluted in 5% polyethylene glycol-400
(PEG400, Fluka) and 5% Tween®80 (Sigma-Aldrich) in
phosphate-buffered saline (PBS) and administered intra-
peritoneally at 20 mg/kg 48 h before the induction of
MCAO (MCAO+R,,,.) or 20 min after (MCAO+R,o)-
We used a total of 57 male mice, which were ran-
domly distributed into the following experimental
groups (Additional file 1: Fig. S1A): Sham + Vehicle (V),
n=10; Sham + Rapamycin (R), n=10; MCAO+V, n=14;
MCAO+R,,, n=12;and MCAO+R,,, n=11. We used
28 and 29 mice for western blot (WB) analysis and immu-
nohistochemical analysis, respectively.

Thromboembolic stroke model

Middle Cerebral Artery Occlusion (MCAQ) by intravas-
cular thrombin injection [38] was used. Animals were
anesthetized with a mixture of 5% isoflurane, 1.5% O,,
and 1.5% NO, and were maintained with 2—3% isoflurane
during the surgical procedure according to the needs of
each animal. Once the animal had been fixed in the stere-
otaxic frame, a craniotomy was performed on the tempo-
ral bone. Dura mater and meninges were removed until
the middle cerebral artery (MCA) was isolated. A glass
micropipette was then introduced into the lumen of the
base of the branching MCA and 1U of purified murine
a-thrombin (Enzyme Research Labs) was pneumatically
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introduced to induce clot formation. After 10 min, the
micropipette was removed. Cerebral blood flow was
monitored using a laser Doppler equipped with a fibre
optic probe (Oxford Optronic) both before and up to 20
min after MCAO to verify and discard early spontaneous
recanalization.

Magnetic resonance imaging (MRI)

MRI using a Pharma Scan 7T (Bruker). Was performed
on all the animals 24 h after surgery. Sequence acquisi-
tion was carried out using a Pharma Scan 7T (Bruker).
Images were acquired using a TE/TR 33 ms/2500 ms
multi-slice sequence. In addition, a series of T2-weighted
sequences and the angiogram were obtained to monitor
MCA recanalization. Lesion size was determined using
Image ] software. Animals that showed a lesion <5 mm?
24 h post-MCAO were discarded.

Western blot (WB)

Soluble protein extracts from the parietal cortex of sham
and operated mice were used for WB analysis. Mice
under anaesthesia were subjected to intracardiac perfu-
sion with PBS 7.4 pH. The damaged cortex was removed
and maintained at —80 °C until the subsequent analysis.
Ice-cold lysis buffer [50 mM Tris 8.0 pH; 100 mM NacCl,
10 mM NaF, 5 mM EDTA, 1% Triton X-100, 1 pM oka-
daic acid, 2 mM sodium orthovanadate and protease
inhibitors (Roche, #1,697,498)] was used to homogenize
the brain samples. Homogenates were kept in ice for 15
min and centrifuged at 12,000 g for 10 min at 4 °C. Pro-
tein concentration was measured using the DC Protein
Assay (Bio-Rad), following the manufacturer’s proto-
col. Proteins were resolved on SDS—polyacrylamide gel,
transferred to a 0.2 pm nitrocellulose blotting membrane
(Amersham Protan), and blocked with 5% milk pow-
der+0.1% Tween in PBS. Membranes were incubated
overnight at 4 °C with primary antibodies diluted in 5%
BSA+0.1% Tween in PBS (see Table 1). They were then
washed with PBS and incubated for 1 h at room tem-
perature with the appropriate secondary antibody: goat
anti-Rabbit IgG-HRP (Southern Biotech, #4030-05) or
goat anti-Mouse IgG-HRP (Southern Biotech, #1030—-05)
1:5000. Immunoreactivity was detected using Clarity
Western ECL substrate (Bio-Rad, #170-5061). B-Actin
was used as an internal control. The relative expression
levels of proteins were measured using Image] software
(Image], Fiji).

Tissue preparation

Mice were sacrificed by intracardiac perfusion with 4%
paraformaldehyde in PBS (4% PFA) under 5% isoflurane
24 h after MCAO induction. Brains were immediately
removed and fixed by immersion in 4% PFA for 24 h at

Page 3 of 17

Table 1 Primary antibodies used by Western Blot analysis

Primary Host Dilution Trading house Reference
antibody

Akt Total RabbitpAb  1:1000  Cell Signaling 9272
Akt p-Ser473 RabbitpAb  1:1000  Cell Signaling 9271
mTOR Total Rabbit pAb  1:1000  Cell Signaling 2972
mTOR p-Ser2448  Rabbit pAb  1:750 Cell Signaling 2971
P70S6K Total RabbitpAb  1:1000  Cell Signaling 9202
P70S6K p-Thr389  Rabbit pAb  1:500 Cell Signaling 9205

S6 p-Ser240/244  RabbitpAb  1:1000  Cell Signaling 2215
GFAP RabbitpAb  1:1000  Cell Signaling ~ M0761
STREM2 Rabbit pAb  1:1000  Alomone Labs  ANR-018
B-Actin Mouse mAb  1:2000  Sigma-Aldrich  A5441

4 °C. They were then cryoprotected using sucrose solu-
tion and finally embedded in Tissue-Tek medium (Sakura
Finetek). Brain sections were cut into 10 um thick coro-
nal slices from Bregma+1 to —2 mm [11].

Immunohistochemistry and immunofluorescence

For immunohistochemical staining, brain sections were
incubated in blocking solution (0.1% Triton X-100, 1%
BSA, 1% Horse Serum in PBS) for 1 h and incubated
overnight at 4 °C with the specific primary antibody:
mouse anti-NeuN 1:200 (Millipore, MAB377), rabbit
anti-GFAP 1:1000 (Dako, M0761) or rabbit anti-Iba-1
1:500 (Wako, 019-19741) diluted in blocking solution.
Endogenous peroxidase activity was inhibited with 0.1%
H,O, in PBS. After washing, samples were incubated
with the appropriate secondary antibody using the ABC
kit (Vectastain® ABC, Vector Laboratories, USA), fol-
lowing the manufacturer’s instructions. Secondary anti-
bodies were visualized using diaminobenzidine (DAB).
Coverslips were mounted with Depex (Panreac) and
images were captured using an Olympus BX51 micro-
scope with an Olympus camera DP-70 (Olympus).

For immunofluorescence staining, samples were pre-
treated for 30 min with 0.1 M Glycine 8.5 pH. They
were then blocked for 1 h and incubated overnight at
4 °C with guinea pig anti-Iba-1 1:750 (LabClinics, #HS-
234004), rabbit anti-S6 p-Ser240/244 1:200 (Cell Signal-
ing, #2215) or rabbit anti-sTREM2 1:300 (Alomone Labs,
#ANRO018) diluted in blocking solution. The following
day, samples were washed in PBS and incubated with the
appropriate secondary antibody: anti-rabbit Alexa 488
and anti-guinea pig Alexa 555, both 1:1000 (AlexaFluor,
Thermo-Fisher). After washing, nuclei were stained with
DAPI 1:5000 (Calbiochem) for 5 min. Sections were
mounted with Fluoromount-G (Southern Biotechnology
Associates).
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Images were captured using a confocal laser scanning
microscope LSM900 coupled to a vertical Axio Imager
2 microscope (Zeiss). Sequential optical sections (1 um)
were acquired in Z-stacks. We used a minimum of
four brain slices from each mouse. Images from dam-
aged regions (infarct and peri-infarct) were captured
at 20X magnification. The number of positive cells was
expressed as the mean of the total cell number counted
per mm? and it was calculated using the cell counter
plugin with Fiji software. In brief, the image contrast was
enhanced and then a threshold was established to elimi-
nate the background.

Analysis of microglial morphology

Microglial morphology was studied on Iba-1-stained
immunofluorescence images from different non-con-
secutive sections from Bregma+1.2 to 0.5 mm taken at
20X magnification [11]. We used cell area and number
of branch points as parameters for this analysis [23]. All
cells present in the study field were analysed, using a
minimum of 4 non-consecutive slices per mouse. In brief,
the image contrast was enhanced and then a threshold
was established to eliminate the background.

Statistical analysis

All statistical analyses were performed with GraphPad
Prism 8.0 (GraphPad Prism Software®). Data are rep-
resented as mean+ SEM (standard error of the mean).
First, normal distribution of data was checked using

A

MCAO+V

MCAO*R
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the Shapiro—Wilk test. Two-way analysis of variance
(ANOVA), followed by post hoc multiple comparisons
using Bonferroni correction, was performed to compare
more than two experimental groups. The unpaired t-test
was used to compare two groups. All statistical tests were
performed in a two-tailed manner. Data were consider-
ing statistically significant at p<0.05=*% p<0.01=**,
p<0.001="**

Results

Rapamycin reduces the volume of ischemic lesions

The MRI analysis after MCAO induction showed that
rapamycin administration significantly reduced lesion
volume. MCAO induced a lesion of 17.4+1.7 mm® and
rapamycin-treated ischemic mice showed a decrease
in lesion volume compared to untreated counterparts
(MCAO+R,, 11416 mm® p<0.05 MCAO+R,
9.6+1.5 mm?, p<0.01 vs. MCAO). No differences were
observed regarding the timing of rapamycin administra-
tion (Fig. 1A, B).

Rapamycin decreases mTORC1 activity in microglia

after MCAO

Next, we analysed mTORC activity in brain tissue. We
quantified the total amount and the phosphorylated
levels of the main players of the mTORC1 pathway
(see Fig. 2A) to infer the activity levels of mTORC1 and
mTORC2. To this end, we assessed the levels of Akt
p-Serd73, which indicates mTORC2 activity, the levels
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Fig. 1 Rapamycin reduces volume of ischemic lesion. A Representative MRl images showing the lesion volume after 24 h of MCAQO induction. The
red line delineates the lesioned area. B Graphical quantification of lesion volumes. Data represent means + SEM (Ordinary one-way ANOVA * p <0.05,

** p<0.01). MCAO+V n=11; MCAO+R,

(See figure on next page.)

n=12; MCAO + Rpost n=11 (V=vehicle; R=rapamycin)

Fig. 2 Rapamycin decreases mTORC1 activity in tissue after MCAO A Schematic representation of the mTORC1 pathway. B Representative Western
Blot images of the analysed extracts proteins from mice cerebral cortex. Immunodetections were performed using antibodies against total

Akt, Akt p-Ser473, total mTOR, mTOR p-Ser2448, total P70S6K, P70S6K p-Thr389 and B-Actin, as a loading control. C-H Graphical quantification

of immunodetection by Western Blot. Data are normalized against B-Actin and expressed as the percentage of variation versus sham. Graph values
represent means = SEM (Ordinary one-way ANOVA * p <0.05; ** p<0.01; *** p <0.001. Unparied t-test * p<0.05; ** p<0.01; *** p<0.001). Sham +V
n=4-5, Sham+R n=4-5, MCAO+V n=5; MCAO +Rpre n=4-5 and MCAO + Rpost n=4-5 (V=vehicle; R=rapamycin). * vs Sham and * vs MCAO +V

group
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of mTOR p-Ser2448 itself and P70S6K p-Thr389, the
principal target of mMTORC1 [43].

No variations in the levels of total Akt (Fig. 2B, C), Akt
p-Serd73 (Fig. 2B-D), total mTOR (Fig. 2B-E), or total
P70S6K p-Thr389 (Fig. 2B—G) were observed in any
of the experimental groups. Rapamycin-treated sham
mice showed a significant reduction in phosphoryla-
tion levels of mTOR p-Ser2448 (55.9+7.23%, p <0.001)
(Fig. 2B-F) and P70S6K p-Thr389 (68.2+3.0%, p <0.05)
(Fig. 2B—H) compared to untreated counterparts. These
data confirm that rapamycin administration downregu-
lates mMTORC1 but not mMTORC2 activity in the brain.

The MCAO group showed an increase in the lev-
els of both phospho-epitopes compared to sham mice
(p-mTOR: 55.9+7.3%, p<0.05; p-P70S6K: 68.2+3%,
p<0.01) (Fig. 2B-F and B—H). Rapamycin administra-
tion pre- and post-MCAO triggered a significant reduc-
tion in p-mTOR (MCAO+R,,.: 103.3+7.2%, p<0.05;
MCAO +Ro: 71.4£3.7%, p<0.01) and p-P70S6K
(MCAO+R,,: 109.4+54%, p<0.05 MCAO+R,,
76+6.7%, p<0.01) levels compared to the untreated
ischemic group (Fig. 2B-F and 2B-H). No differences
were observed in mTOR phosphorylation levels regard-
ing the timing of drug administration (Fig. 2B—F). How-
ever, P70S6K p-Thr389 levels showed a large decrease
when rapamycin was administered post-surgery com-
pared to pre-surgery (76 £ 6.7%, p <0.01) (Fig. 2B—H).

Next, we sought to elucidate the microglial contri-
bution to increased mTORC1-activity after stroke in
brain lysates. To this end, we examined the phospho-
rylation levels of S6 ribosomal protein, a direct target
of mTORC1/P70S6K [35], to infer mTORCI activity in
these cells by double immunofluorescence using p-S6
and Iba-1 antibodies (Fig. 3A). p-S61/Iba-1" cells were
absent in sham mice but present in the MCAO groups.
The mice treated with rapamycin, pre- and post-
MCAO, showed a decrease in the number of p-S6*/
Iba-1" cells compared to untreated ischemic mice. No
differences were observed between pre- and post-rapa-
mycin administration (Fig. 3A). WB analyses indicated
an increment in p-S6 levels after MCAO compared
to sham mice (182.7+13.9%, p<0.001) (Fig. 3B-C).
Rapamycin reduced p-S6 levels in treated sham mice
compared to untreated ones (39.9+2.9%, p<0.001)
(Fig. 3B—C). Similarly, both rapamycin-treated ischemic
mouse groups showed a significant reduction in p-S6
levels compared to untreated ischemic (MCAO+R,:
62.2%+2.8, p<0.001; MCAO+R,.: 43.1+4.4%,
p<0.001), without no differences between the drug
administration times (Fig. 3B—C). These data suggest
that the mTORCI activation observed by WB could be
related to an increase in the activity of the PI3K/Akt/
mTORCI1 pathway in microglia.
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Rapamycin reduces neuronal loss after MCAO

We studied the impact of mTORCI inhibition pre- and
post-MCAO on neuronal survival. To this end, we per-
formed an immunohistochemistry assay using the NeuN
antibody to quantify the number of NeuN™ cells in the
damaged area (see Additional file 2: Fig. S1B). Rapa-
mycin treatment did not alter the number of NeuN™*
cells in sham mice. MCAO reduced the total number
of NeuN™ cells in the whole damaged area compared to
sham mice (490426 cells/mm?, p<0.001) (Fig. 4A, B).
Regional analysis showed a greater decrease in the num-
ber of NeuN™ cells in the infarct zone (193+19 cells/
mm?, p<0.001) than in the peri-infarct region (297 + 19
cells/mm?, p<0.001) (Fig. 4A—C). MCAO mice treated
with rapamycin showed a significant reduction in the
loss of neurons throughout the damaged area com-
pared to untreated ischemic, regardless of the time of
drug administration (MCAO+R,.: 672+41 cells/mm?,
p<0.05 MCAO+R,: 639+34 cells/mm?® p<0.01)
(Fig. 4A, B). In both rapamycin-treated ischemic groups,
a further reduction in the number of NeuN" cells in the
infarct zone were observed (Fig. 4A, C). No differences
were found between the times of drug administration
(Fig. 4B, C). The data obtained from the WB analysis
confirmed the histological results. MCAO significantly
reduced NeuN levels compared to untreated sham mice
(39.6+3.7%, p<0.001), and rapamycin-treated ischemic
mice showed an increase in total NeuN levels com-
pared to untreated ischemic counterparts, both pre-
(67.8+3.6%, p<0.001) and post (60.5+1.9%, p<0.001)
ischemic injury. No differences were observed between
the times of rapamycin administration (Fig. 4D, E). These
results suggest that mTORCI inhibition prevents neu-
ronal loss after ischemia.

mTORC1 inhibition drives changes in microglial density
and morphology after MCAO

Next, we performed immunohistochemistry on brain
slices using the Iba-1 antibody to address the effect
of mTORCI1 inhibition specifically in microglia after
MCAO. We used two distinct parameters to analyse the
microglial response, namely the total number of Iba-17"
cells and the total stained area. In sham groups, rapam-
ycin treatment did not affect either parameter (Fig. 5B,
C). In contrast, MCAO significantly increased both
(762 £42 cells/mm?, p<0.01) (400.3+9.8%, p <0.001)
compared to untreated sham mice (Fig. 5B, C). Rapa-
mycin-treated ischemic mice showed a reduction in
the number of Iba-1* cells (MCAO+R,,: 56030
cells/mm?®, p<0.001; MCAO+R: 540+27 cells/
mm?, p<0.001) and the stained area (MCAO + Rpet
256.3+£9.3%, p<0.01; MCAO+R,: 277.3+8.4%,
»<0.001) compared to untreated ischemic counterparts
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Fig. 3 Rapamycin reduce mTORC1 activity in microglia after MCAO. A Representative confocal immunofluorescence images. Staining

was performed using Dapi (blue), S6 p-Ser240/244 (green) and Iba-1 (red) antibodies. Scale bar: 50 um. B Representative Western Blot images

of the analysed extracts proteins from mice cerebral cortex. Immunodetections were performed using antibodies against S6 p-Ser240/244

and B-Actin, as a loading control. C Graphical quantification of immunodetection by Western Blot. Data are normalized against B-Actin

and expressed as the percentage of variation versus sham. Graph values represent means + SEM (Ordinary one-way ANOVA * p<0.05; ** p<0.01; ***
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n=5 (V=vehicle; R=rapamycin). * vs Sham+V and * vs MCAO +V group
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Fig. 4 Rapamycin reduces neuronal loss after MCAQ. A Representative immunohistochemical images from cortex infarcted area and cortex
peri-infarct region (coronal section, 10 um). Staining was performed used NeuN antibody. Scale bar: 25 um. B Graphical quantification of NeuN* cell
counting across the entire damaged cortical region. C Graphical quantification of NeuN™ cell counting, distinguishing between the two damaged
regions (white bars represent peri-infarct region whereas red bars represent infarcted area). D Representative Western Blot images of the analysed
extracts proteins from mice cerebral cortex. Immunodetections were performed using antibodies against NeuN and B-Actin, as a loading control.

E Graphical quantification of immunodetection by Western Blot. Data are normalized against B-Actin and expressed as the percentage of variation
versus sham. Graph values represent means = SEM (Ordinary one/two-way ANOVA * p <0.05; ** p<0.01; *** p<0.001. Unparied t-test * p<0.05; **
p<001; """ p<0.001). Sham+V n=5, Sham+R n=5, MCAO +V n=7; MCAO +Rpre n=6 and MCAO + Roost N =5 (V=vehicle; R=rapamycin). * vs
Sham+V and * vs MCAO+V group
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and no differences were observed between the times of
rapamycin administration (Fig. 5B, C). No significant
differences were observed between the damaged area
of the infarct zone and peri-infarct region in any of the
parameters analysed (data not shown).

Microglial activation is a highly dynamic process that
involves changes in cellular morphology. These vari-
ations have been associated with the extent and dura-
tion of ischemic damage [17]. Thus, we examined the
effect of mMTORCI1 inhibition on the number of branch
points and cell area of microglia [23], addressing the
infarct zone and peri-infarct region separately. Rapa-
mycin administration in sham mice did not cause any
variations in the number of branch points or cell area in
either of the damaged regions (Fig. 5E, F). In contrast,
mice subjected to MCAO showed an increase in both
parameters compared to sham mice. In the peri-infarct
region, Iba-1" cell showed a ramified morphology with
an increase in the number of branch points (6.9+0.1,
p<0.001) and cellular area (1.03x10°+2.8x10* um?,
p<0.001) compared to the infarct zone (Fig. 5E, F).
In the latter, Iba-1" cells showed an ameboid mor-
phology with a significant reduction in both param-
eters (Branch points: 4.2+0.25, p<0.001. Cell area:
5.8x10°+2.6x 10* um?, p <0.001) (Fig. 5E, F).

Rapamycin-treated ischemic mice showed a sig-
nificant decrease in both parameters compared to
untreated ischemic counterparts. No differences were
observed between the two damaged regions or between
the times of rapamycin administration (Fig. 5E, F).
Slightly branched morphologies were observed com-
pared to highly ramified morphologies MCAO in the
peri-infarct region.

Astrocytes are another cell type involved in the
inflammatory response. Analysis of the astrocytic
response revealed that MCAO significantly increased
the levels of GFAP (165.1 +11.4%, p <0.001) compared
to the sham condition. The levels of GFAP in rapamy-
cin-treated ischemic mice (pre- or post-MCAQ) did
not differ from those of untreated ischemic (Additional
file 2: Fig. S2A-C).

(See figure on next page.)
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mTORC1 inhibition ameliorates microglia reactivity

after MCAO

To determine microglia reactivity after MCAO, we
analysed soluble-TREM2 (sTREM2) and iNOS. The
results refer to the entire region of damaged cerebral
cortex because we did not find differences between
the infarct zone and the peri-infarct region (data not
shown). STREM2 has been related to microglia activa-
tion in various neuroinflammation backgrounds [36].
WB analysis showed an increase in STREM2 levels after
MCAO compared to untreated sham mice (140.2 + 8.4%,
»<0.001) (Fig. 6A, B). Rapamycin-treated ischemic mice
showed a significant reduction in sSTREM2 levels com-
pared to untreated ischemic (MCAO+Rpre: 112.7 +4.6%,
p<0.001; MCAO+R,,: 87.20+8.3%, p<0.05) (Fig. 6A,
B). This decrease was more marked when rapamycin was
injected after MCAO induction. Rapamycin administra-
tion had no effect on the sham group (Fig. 6A, B). In addi-
tion, we performed double immunofluorescence staining
using Iba-1 and sTREM2 antibodies. We observed that
MCAO increased the number of STREM2t/Iba-1" cells
compared to the control (Fig. 6C). The two ischemic
groups treated with rapamycin showed a reduction in the
number of sSTREM27/Iba-1" cells compared to untreated
counterparts (Fig. 6C). In sham mice, rapamycin admin-
istration did not alter the number of STREM2%/Iba-1*
cells (Fig. 6C).

To identify the effect of rapamycin on the abundance
of microglia with the pro-inflammatory phenotype, we
performed double immunofluorescence staining using
antibodies against iNOS and Iba-1. Rapamycin admin-
istration did not alter the number of double-positive
cells in sham mice. However, ischemic mice showed an
increase in the number of iNOS*/Iba-1% cells compared
to untreated sham mice (Fig. 7A). Rapamycin administra-
tion both pre and post-MCAO restored this parameter
to sham values (Fig. 7A). No differences were observed
between rapamycin administration pre and post-MCAO
(Fig. 7A).

These results strongly support the notion that
mTORCI1 inhibition by rapamycin, both pre and post-
MCAO, reduces pro-inflammatory microglia reactivity.

Fig. 5 mTORC1 inhibition in microglia drives changes in their density and morphology after MCAO. A Representative immunohistochemical
images from the entire dagame area (coronal section, 10 um). Staining was performed used Iba-1 antibody. Scale bar: 25 um. B Graphical
representation of Iba-17 cell counting and € graphical representation of Iba-17 stained damage area. D Representative confocal
immunofluorescence images from peri-infarct and infarct area. Staining was performed using Dapi (blue) and Iba-1 (red) antibody. Scale bar: 5 um.
E Graphical representation of the quantification of branching points and the F area occupied by each Iba-1* cell in both damaged regions (white
bars represent peri-infarct region whereas red bars represent infarcted area). Ordinary one/two-way ANOVA * p <0.05; ** p<0.01; *** p<0.001.
Unparied t-test *p<0.05; 7" p<0.01; 7" p<0.001). Sham+V n=5, Sham +R n=5, MCAO +V n=7; MCAO +Rpre n=6 and MCAO + Rpost N=5
(V=vehicle; R=rapamycin). * vs Sham +V (peri-infarct region), *vs Sham+V (infarct region) and " Vs same experimental group
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Discussion

After ischemic damage, the brain tissue generates a ste-
reotypic replay trying to establish the normal physiol-
ogy, if possible. When the recovery is not possible or
correct the ischemic process may turn into a complex
and multifactorial neurodegenerative disease associ-
ated with a large inflammatory process [44, 52]. Several
authors support the notion that neuroinflammation
plays a key role in the recovery of CNS homeostasis by
modulating some brain repair mechanisms [34]. How-
ever, a sustained response over time may contribute to
the development of psychiatric disorders and neurode-
generative diseases [48, 54]. The therapeutic approaches
used to reduce ischemic damage involve recanalization
strategies, including the administration of antithrom-
botic agents and surgical removal of the thrombus to
rescue less damage neurons in the peri-infarct area.
The restoration of blood flow can mitigate the effects
of ischemia only when performed a few hours after
onset of the first symptoms. However, despite the ben-
eficial effects of this approach, it is not suitable for all
patients and does not reduce subsequent neurodegen-
eration [49, 51]. In this context, considerable research
efforts focus on the search for pharmacological alterna-
tives to improve ischemic damage in these patients and
enhance the effects of reperfusion.

Here we used a murine model of transient focal
cerebral ischemia by intra-vasal thrombin injection,
which has proven to be a suitable model to analyse
the acute phase of ischemia in which neuroinflamma-
tion has been reported [38]. As a therapeutic approach,
we tested rapamycin, a known inhibitor of mTORCI],
administered pre- and post-MCAO.

A pivotal player in the PI3K/Akt/mTORCI1 survival
pathway, the mTOR protein is associated with neuro-
protection in the context of cerebral ischemia through
its role in the maintenance of neuronal homeostasis [8,
9]. However, there is less information about its possi-
ble role in glial cells such as astrocytes and microglia.
Recent studies suggest that the PI3K/Akt/mTORC1
pathway is involved in microglia activation and that the
dysregulation of this pathway contributes to alterations
of the neuroinflammatory response [5].

(See figure on next page.)
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Our MRI data indicated that MCAO resulted in a con-
siderable volume of lesion (18 mm?) in the parietal cor-
tex, accompanied by a marked decrease in the number of
neurons. The latter decrease was more pronounced in the
infarct zone than in the peri-infarct region, as reported
by others [7]. Cerebral ischemia triggers an early gliosis,
including microglia and astrocytes as occurs in many
brain insults. Although the astrocyte response is later
than the microglial response, in our model we detected
an increase in GFAP levels distributed around the dam-
aged area, thereby providing evidence of a response by
these cells. Consistent with previous reports describ-
ing the microglial response as one of the earliest events
after cerebral ischemia, we observed an increase in
both the number of Iba-1* cells and their stained area,
thereby confirming the presence of reactive microglial
throughout the entire damaged area [46]. In parallel, the
biochemical analysis revealed an increase in the phos-
phorylation of mTOR and P70S6K, without any varia-
tions in their total amounts. Moreover, this analysis did
not detect changes in either the phosphorylation or total
levels of Akt. These data allow us to confirm that MCAO
drives an increase in mTORCI1 activity without affect-
ing the basal activity of mTORC2, as reported elsewhere
[4, 55]. However, other studies have described opposite
results with respect to mTORCI activity after ischemia
[4, 15, 32]. The use of distinct models that included or
excluded reperfusion, the duration of ischemic damage,
and the time of analysis could explain the differences
between the findings. In this context, to better under-
stand the tissular response to ischemic damage and opti-
mize strategies based on mTORC as therapeutic targets,
it is important to take into account the model of ischemia
used [49].

The reactive microglia has been associated with
changes in the morphology and functions of this cell
type. These transformations require a balance between
catabolic and anabolic cellular processes, which are
regulated, in part, by mTORC1 [5]. Thus, using an
immunofluorescence approach, we revealed an increase
in the number of p-S61/Iba-1" cells in the whole dam-
aged area of MCAO mice. This observation strongly
supports the notion that the increase in mTORC1

Fig. 6 mTORC]1 inhibition reduces Iba-1*/sTREM2* after MCAQ. A Representative Western Blot images of the analysed extracts proteins from mice
cerebral cortex. Immunodetections were performed using antibodies against STREM2 and B-Actin, as a loading control. B Graphical quantification
of immunodetection by Western Blot. Data are normalized against B-Actin and expressed as the percentage of variation versus sham. Graph values
represent means + SEM (Ordinary one-way ANOVA * p <0.05; ** p<0.01; *** p <0.001. Unparied t-test * p<0.05; ** p<0.01; *** p<0.001). Sham +V
n=>5,Sham+Rn=5 MCAO+V n=>5 MCAO+Rpre n=5 and MCAO +R . n=5 (V=vehicle; R=rapamycin). * vs Sham+V and *vs MCAO+V group.
C Representative confocal immunofluorescence images from the entire damage area. Staining was performed using Dapi (blue), STREM2 (green)

and Iba-1 (magenta) antibodies. Scale bar: 25 ym
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Fig. 7 mTORC]1 inhibition reduces Iba-1*/iNOS* after MCAO. A Representative confocal immunofluorescence images from the entire damage area.
Staining was performed using Dapi (blue), INOS (green) and Iba-1 (magenta) antibodies. Scale bar: 50 um

activity, observed by WB, is due mainly to micro-
glia. In addition, the morphological heterogeneity of
the microglial response has been associated with the
extent and duration of ischemic damage, and with the

characteristics of the brain region monitored by these
cells [31, 37]. Our data showed that the predominant
microglial phenotype after MCAQO differed between
the infarct zone and peri-infarct region, with amoeboid
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microglia being most abundant in the former and
highly branched microglia in the latter, as reported pre-
viously [45]. Furthermore, microglia activation involves
polarization to the M1 pro-inflammatory or M2 anti-
inflammatory phenotype. Despite this binary classifica-
tion, there is evidence that supports the coexistence of
a heterogeneous reactive microglia population [13, 19].
In the present study, we analysed microglia reactivity
using sSTREM2 and iNOS. The former is a transmem-
brane receptor expressed mainly by immune cells and
by reactive microglia in the CNS [36]. Some authors
have reported an association between sSTREM2 levels
and the prognosis of ischemia [22, 29]. On the other
hand, iNOS produces nitric oxide, which promotes
neuronal death after stroke [50]. Our data showed that
MCAO triggers an increase in both markers in micro-
glia, accompanied by an increase in the number of
p-S61/Iba-1" in the damaged area. Based on our find-
ings, we propose that, post-MCAO, mTORCI1 activity
mediates the early state of reactive microglia that could
contributes to the detrimental effects of inflammation.
Thus, we studied whether mTORC]1 inhibition confers
neuroprotection in our ischemia model. Rapamycin has
been used in clinical practice for several decades due to
its immunosuppressive properties, and it shows prom-
ising results in some ischemic pathologies [16, 33].
However, there are controversial results about dosage
and timing of administration. Several studies derived
from meta-analysis have shown that low doses of rapa-
mycin have greater efficacy against ischemic damage
compared to high ones, showing a reduction in the
volume of damage and neurological improvement in
animals [1]. Whereas mTORCI is highly sensitive to
rapamycin, mTORC2 inhibition requires higher doses
or prolonged exposure to this drug [10, 47]. Therefore,
high rapamycin dosages exacerbate autophagy induc-
tion and mTORC?2 inhibition. The regulation of neu-
ronal survival pathways is under mTORC2 governance.
Therefore, the maintenance of basal levels of this com-
plex and/or its increase after cerebral ischemia could be
a fundamental approach for neuronal survival and the
reduction of the volume of damage [1, 21]. In this con-
text, the inhibition of both mTORC1 and mTORC2 by
rapalink-1 increases the volume of the ischemic lesion
[3, 4]. In contrast, our results showed that 20 mg/kg
rapamycin administered pre- or post-MCAO decreased
the volume of damage by 35-45%. Our WB data showed
that rapamycin did not modify Akt p-Ser473 levels in
the sham group, thereby suggesting that this dosage of
rapamycin is not sufficient to inhibit mTORC2 activ-
ity. In contrast, we observed that rapamycin caused a
significant reduction in p-mTOR and p-P70S6K levels
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after MCAO—findings consistent with those reported
in other studies [27, 55].

Regarding the time of rapamycin administration, the
present study and another carried out by Wu and col-
leagues [53] are the only ones to compare rapamycin
administration pre- and post-ischemic damage. Our
data showed that, for both rapamycin administra-
tion approaches, damage volume and neuronal loss
were markedly lower compared to the vehicle-treated
ischemic group, with no difference between the admin-
istration times used [53]. However, at the biochemical
level, rapamycin administration post-damage further
reduced mTORCI activity than at 48 h before ischemia,
as reflected by lower levels of P70S6K phosphorylation
by mTORC1 in the MCAO + R, group. The differences
observed could be attributed to the effective concentra-
tion of rapamycin in the brain, a parameter related to the
time between drug administration and euthanasia of the
animals.

mTORCI1 inhibition led to a decrease in both the num-
ber of Iba-1* cells and the intensity of Iba-1 staining in
the damaged area, a finding consistent with other studies
[25]. The analysis of microglia morphology showed that
mTORCI1 inhibition reduced the branching and area of
Iba-1* cells. Accordingly, after rapamycin treatment, we
observed slightly branched morphologies in the damaged
area compared to highly branched microglia in the peri-
infarct region and amoeboid morphologies in the infarct
zone described in untreated ischemic mice. The present
study is the first to analyse the effects of rapamycin-
induced mTORC1 inhibition on changes in microglial
morphology. In addition, these morphological changes
were associated with a significant reduction in STREM2
and iNOS levels in microglia.

Conclusions

On the basis of our results, we conclude that mTORC1
inhibition reduces the reactivity and the pro-inflamma-
tory phenotype of microglia, thereby decreasing neu-
ronal death and ischemic lesion volume. Several working
hypotheses can be put forward to explain these findings.
For instance, it is tempting to propose that the mTORC1-
P70S6K-S6 pathway regulates microglia activation after
the induction of cerebral ischemia and that the modula-
tion of this activation by rapamycin reduces microglial
reactivity and neuronal death. However, we cannot dis-
card a complementary effect of rapamycin on neurons
and /or other cells in the damaged area.

Finally, taken together, our data demonstrate that the
use of specific mTORC1 inhibitors during the acute
phase of cerebral ischemia has a neuroprotective effect,
reducing the inflammatory microglial response. Given
that rapamycin administration pre- and post-MCAO
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induction had similar effects with respect to neuronal
protection, the administration of rapamycin or new rapa-
logs emerges as a potential therapeutic approach to tackle
the acute phase of cerebral ischemia. Such a therapeutic
strategy could be easily tested on patients as rapamycin
is already authorised for the treatment of other human
pathologies.
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Additional file 1. Fig. S1. Experimental design and determination of
damage regions. A) Mice were randomly distributed into five experimental
groups. Sham groups were injected with the vehicle solution or rapamy-
cin 48 hours before MCAO simulation. MCAO+V group was injected with
the vehicle solution 48 hours before the surgery. MCAO+Rpre group was
injected with rapamycin 48 hours before the surgical procedure, while the
MCAO+Rpost group was injected with rapamycin 20 minutes after the
surgery. Twenty-four hours following the MCAO simulation or induction,
brain damage was assessed by MRI. Then animals were euthanized col-
lecting brains to perform the corresponding analysis. B) According to the
MRIimages, infarcted area affects to M1/M2 cortex (Field 2) whereas the
peri-infarct area corresponds to the S1 cortex (Field 1).

Additional file 2. Fig. S2. MCAO triggers astrocytic response. A) Repre-
sentative immunohistochemical images from the entire damage area
(coronal section 10 um). Staining was performed used GFAP antibody.
Scale bar: 25 um. B) Representative Western Blot images of the analysed
extracts proteins from mice cerebral cortex. Immunodetections were per-
formed using antibodies against GFAP and B-Actin, as a loading control.
C) Graphical quantification of immunodetection by Western Blot. Data are
normalized against B-Actin and expressed as the percentage of variation
versus sham. Graph values represent means + SEM (Ordinary one-way
ANOVA *p < 0.05; **p < 0.01; ***p < 0.001). Sham+V n=5, Sham+R n=4,
MCAO+V n=5; MCAO+Rpre n=5 and MCAO+Rpost n=5 (V=vehicle;
R=rapamycin). * vs Sham+V.
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