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The antiapoptotic subfamily includes at least six mem-
bers (Bcl-2, Bcl-xL, Mcl-1, Bcl-w, Bfl-1, and Bcl-B) [3]. 
The first three proteins have been studied intensively by 
many authors [4–6]. Recently, Bcl-w and Bfl-1 have also 
been discussed in detail [7, 8]. However, despite its apop-
totic and non-apoptotic functions, Bcl-B remains poorly 
characterized. In this mini-review, we try to close this 
gap and summarize the current knowledge concerning 
the functions of this “unknown” protein (Fig. 1).

Discovery, structure, and protein–protein 
interactions
Bcl-B (B-cell lymphoma 2 family protein resembling 
Boo)/Bcl-2L10/Nrh (Bcl-2 like protein 10), is encoded by 
BCLB gene. This human protein was discovered indepen-
dently by three groups in 2001 [9–11]. Bcl-B is homolo-
gous to the murine Bcl-2 protein Boo/Diva, a fact that is 
reflected in its name [9]. Despite the structural resem-
blance (the amino acid sequence identity and similarity 
between Bcl-B and Boo is about 45.5–47% and 60.7%, 
respectively), there are some differences between these 
proteins [9, 12]. First, Bcl-B contains 204 amino acids, 
while Boo is only 191 amino acids long protein [13]. Sec-
ond, human Bcl-B is widely expressed in many healthy 
tissues and tumors in adults, while Boo has been found 
mainly in mouse ovary and testis [9, 14].

Introduction
The members of the Bcl-2 family of proteins are essen-
tial regulators of cell death which control activation of 
the intrinsic pathway of apoptosis. They are divided into 
two groups: pro- and antiapoptotic proteins. The former 
is also separated into two subsets: multidomain effector 
proteins (Bak and Bax) and regulatory proteins contain-
ing only one Bcl-2 homology (BH) region, namely BH3-
only proteins (Bim, Bid, Bad, Bmf, Bik, Noxa, Puma, and 
Hrk). The induction of the intrinsic pathway in response 
to various stimuli leads to displacement of proapoptotic 
proteins from their antiapoptotic partners, mitochon-
drial outer membrane permeabilization, and activation 
of the caspase cascade that ultimately results in apoptotic 
cell death. The increased level of prosurvival proteins is 
responsible for evasion of cell death and promotes carci-
nogenesis [1–3].
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Surprisingly, more than twenty years after its discov-
ery, many aspects of Bcl-B remain unclear. The first “open 
question” is the structural organization of Bcl-B. On the 
one hand, numerous researchers have reported that Bcl-B 
has a structure that is typical for various antiapoptotic 
proteins of the Bcl-2 family [15], with four BH domains 
(BH1, BH2, BH3-like, and BH4) and a transmembrane 
(TM) domain [9, 16–20]. On the other hand, some 
researchers have presented evidence that human Bcl-B/
Bcl-2L10 and murine Boo/Diva are characterized by the 
absence of a BH3 domain [10, 12, 13, 21]. Moreover, Boo/
Diva contains an altered BH1 domain that prevents pos-
sible interactions with proapoptotic proteins [13].

The second “open question” relates to possible inter-
action partners of Bcl-B. This protein is able to inter-
act with fewer Bcl-2 family proteins compared with the 
other antiapoptotic Bcl-2 family proteins. Bcl-B/Bcl-2L10 
selectively binds Bax and neutralizes its proapoptotic 
function [9, 17, 18, 22]. Mutant forms of any of these pro-
teins abrogate the formation of the corresponding com-
plex [18]. However, Bcl-B cannot interact with Bak, Bad, 
and Bid [18]. Surprisingly, Boo/Diva can bind Bak, but 
not Bax [21]. Another partner of Bcl-B is the BH3-only 
protein Bim. Interestingly, Bim and Bax form complexes 
with the whole subset of the antiapoptotic Bcl-2 family 
proteins [12]. The main reason for specificity of Bcl-B 
binding to only these two proteins is still unclear.

Finally, it should be noted that Boo/Diva knockout mice 
show no abnormalities. The mice are fertile, and their life 
expectancy is similar to that of wild type mice [23]. The 
lack of abnormalities suggests several things. First, the 
functional activity of Bcl-B during embryogenesis could 
be compensated by other proteins. Second, Bcl-B tar-
geting in humans may result in lower negative effects in 
normal tissues compared with other proteins of the Bcl-2 
family. Notably, Bcl-xL or Mcl-1 knockout in mice leads 
to embryonic lethality [24, 25]. Moreover, selective inhib-
itors of Bcl-xL and Mcl-1 have not succeeded in clinical 
trials due to excessive toxicity [2, 26]. Bcl-2 knockout in 
mice results in an altered phenotype. Venetoclax, a selec-
tive Bcl-2 inhibitor, was approved by the Food and Drug 
Administration (FDA) several years ago for treatment of 
various cancers [2].

The role of Bcl-B in normal conditions
Pro- and antiapoptotic properties
Another unclear area is the functional activity of Bcl-B. 
Is it an apoptotic or a prosurvival protein? Again, the 
results are controversial. Murine Boo/Diva has dem-
onstrated both proapoptotic [20, 27] and antiapoptotic 
[21, 28, 29] activities in different in vitro cell models. For 
example, nucleoside diphosphate kinase NM23-H2 sup-
presses Bcl-B- or Boo-mediated apoptosis in vitro [16]. 
According to various reports, human Bcl-B/Bcl-2L10 

exerts predominantly antiapoptotic properties [9, 10, 17, 
18]. However, Nur77/TR3, an orphan nuclear receptor, 
can bind to Bcl-B and transform its antiapoptotic pheno-
type into a proapoptotic one via conformational changes 
in its structure that expose its BH3 domain and subse-
quent exertion of proapoptotic activity in plasma and 
myeloma cells [30, 31]. Of note, Nur77/TR3-dependent 
transformation has been proposed for Bcl-2 [32]. Impor-
tantly, Nur77/TR3 does not contain BH domains. This 
fact suggests that Bcl-B could interact with other pro-
teins not just via the BH-mediated interface. It is likely 
that the pro- or antiapoptotic role of Bcl-B and Diva is 
determined by the cellular context, but this topic requires 
further investigation.

Autophagy
A possible explanation for the contradictory apoptotic 
functions of Bcl-B could be that this protein regulates 
other types of programmed cell death (PCD), in particu-
lar, autophagy, which promotes degradation of damaged 
proteins and organelles. This process might also act as an 
essential adaptive mechanism for the maintenance of cell 
survival by preventing apoptosis [33, 34]. Bcl-B binds to 
the BH3 domain of Beclin 1 and can block this important 
activator of autophagy. In contrast, Bcl-B suppression 
induces both apoptosis and autophagy [19, 35]. A similar 
mechanism of autophagy regulation is known for Bcl-2 
and Bcl-xL [36, 37].

Mitophagy is a subtype of autophagy and represents 
selective elimination of aged and damaged mitochon-
dria in lysosomes. Mitophagy activation usually inhib-
its apoptosis, but it is also able to promote apoptosis in 
several situations. Bcl-B/Bcl-2L10 can control the activ-
ity of Parkin, an E3 ubiquitin ligase and a key participant 
of mitophagy. The formation of a Bcl-B/phospho-Parkin 
complex blocks mitophagy and thus inhibits apoptosis in 
hepatic stellate cells [38]. Taken together, the disturbed 
balance between apoptosis and autophagy regulation can 
underlie the “apoptotic dualism” of Bcl-B (Fig. 1).

The functional activity of all proteins is linked to their 
subcellular localization. Like other antiapoptotic pro-
teins of the Bcl-2 family, Bcl-B contains a C-terminal TM 
domain that is responsible for its anchoring in the intra-
cellular membranes. Bcl-B is commonly located in the 
outer mitochondrial membrane (OMM) [15]. However, 
prosurvival proteins can also be localized in the endo-
plasmic reticulum (ER) to regulate intracellular Ca2+ lev-
els and activation of apoptosis [39]. Bcl-B can bind to the 
inositol 1,4,5-trisphosphate receptor (IP3R) through its 
BH4-domain and block Ca2+ release from the ER, thereby 
preventing apoptosis. Bcl-B-mediated regulation of Ca2+ 
is controlled by IP3R-binding protein (IRBIT): Phospho-
IRBIT enhances the action of Bcl-B, but dephosphoryla-
tion of IRBIT has the opposite effect [40]. Taken together, 
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these data contribute “contradictions” regarding the 
apoptotic properties of Bcl-B.

Oogenesis and embryogenesis
Bcl-B and its homologs are highly expressed in mice, 
buffalo, zebrafish, and human oocytes; ovarian tissue; 
and early-stage embryos. This protein plays an impor-
tant role in the development and maintenance of oocytes 
and embryos [41–46]. Boo/Diva and BCL2L10 suppres-
sion inhibits oocyte maturation in cultured murine and 
buffalo oocytes [42, 45], a phenomenon accompanied by 
alterations in their spindles and chromosome organiza-
tion [42]. Moreover, Bcl-B is essential for correct micro-
tubule organization in mouse and human oocytes [43, 
47]. Interestingly, Bcl-B is mainly found in the cytosol 
of human oocytes and embryos, whereas in adult tissues 
it is localized in mitochondria and the ER. Meanwhile, 
Bcl-B is detected in the nucleus of abnormal embryos and 
might be a potential biomarker of “embryo quality” [43, 
44]. The zebrafish protein Nrz (a homolog of murine Boo) 
located in the OMM and ER and regulates apoptosis and 
Ca2+ signaling, thereby controlling cytoskeletal dynam-
ics. It is essential for processes of gastrulation and somi-
togenesis in zebrafish [39, 48]. Additionally, blastocysts 
of patients with polycystic ovaries have lower expression 
of BCL2L10 compared with healthy controls [49]. Taken 

together, these observations indicate that Bcl-B is cru-
cial for the maintenance of oogenesis and embryogenesis 
in humans and animals, underlining the importance of 
apoptosis regulation in physiological processes.

The regulation of Bcl-B and its role in pathology
Transcriptional/translational level
Like all proteins, Bcl-B is regulated at the transcriptional, 
translational, and posttranslational levels (Fig. 2).

Unfortunately, transcriptional and translational regula-
tion of Bcl-B is understudied. STAT3 is a positive regula-
tor of Bcl-B transcription in melanoma [50]. Additionally, 
the long noncoding RNA CERNA1 increases the Bcl-
2L10 transcription rate via epigenetic regulation in vas-
cular endothelial cells and ovarian cancer [51, 52]. At the 
translational level, several microRNAs (miRNAs) have 
been reported to regulate Bcl-B/Bcl-2L10 expression. 
First, miRNA-1229 negatively affects the Bcl-2L10 level 
in colorectal cancer [53]. miRNA-18a also downregulates 
Bcl-2L10, and this change might mediate cell invasion, 
migration, and proliferation in hepatocellular carcinoma 
(HCC) [54]. Moreover, miRNA-dependent regulation of 
Bcl-B might contribute to the development of non-can-
cer diseases. For example, toxic epidermal necrolysis (a 
type of severe drug-induced skin reaction) whose precise 
pathogenesis remains unknown could be associated with 

Fig. 1 The roles of Bcl-B in normal and pathological conditions
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excessive keratinocyte apoptosis. Moreover, miR-18a-5p-
mediated Bcl-B suppression activates apoptotic death of 
keratinocytes in patients with toxic epidermal necrolysis 
[55, 56].

Posttranslational level
The process of proteasomal degradation is an important 
mechanism by which Bcl-B is regulated [57]. Ubiquilin-1 
is a selective Bcl-B regulator that does not interact with 
other antiapoptotic Bcl-2 family proteins. Ubiquilin-
1-dependent monoubiquitinylation of Bcl-B leads to its 
stabilization and removal from mitochondria to the cyto-
sol [58]. Furthermore, another member of the ubiquilin 
family, ubiquilin-4, stabilizes Bcl-B and prevents apopto-
sis in mesothelioma cells, which have high Bcl-B expres-
sion [59]. Unfortunately, the mechanisms underlying the 
stabilization and relocation of Bcl-B after interactions 
with ubiquilins remain uncertain and require further 
clarification.

It should be noted that stability of antiapoptotic pro-
teins correlates with their prosurvival activity. Of the 
six antiapoptotic Bcl-2 family proteins, Bcl-B, Bfl-1, and 
Mcl-1 are more prone to basal or drug-mediated protea-
somal turnover in cancer cells; this turnover could limit 
their functional activity. Nevertheless, disturbances in the 
proteasomal degradation machinery of Bcl-B, Bfl-1, and 
Mcl-1 could facilitate drug resistance or tumor develop-
ment [60]. Notably, the indirect inhibitor (PaTrin-2) of 

the specific deubiquitinase of Mcl-1 has been studied [1]. 
Furthermore, the combination of azacytidine (a chemo-
therapeutic agent) and erlotinib (an inhibitor of the epi-
dermal growth factor receptor) has a synergetic effect in 
acute myeloid leukemia (AML) cells and primary AML, 
and myelodysplastic syndrome (MDS) cells by induc-
ing proteasomal degradation of Mcl-1 and Bcl-B; these 
data indicate the indirect inhibition of Bcl-B [61]. These 
facts suggest that the cellular strategies used to control 
the levels of antiapoptotic Bcl-2 family proteins can be 
applied for therapy. Accordingly, targeting deubiquitin-
ases or activating ubiquitin ligases of Bcl-B appears to be 
a potential strategy to eliminate Bcl-B-dependent cancer 
cells (Fig. 2).

“Dualism” of Bcl-B in carcinogenesis: Oncogene/
oncosuppressor activity
As mentioned earlier, Bcl-B is highly expressed in normal 
and tumor tissues. Its expression has been detected in 
many types of solid and blood malignancies [14]. How-
ever, its role in tumor development and progression is 
variable. Bcl-B acts as an oncogene in some tumors [50, 
62–64] but prevents tumorigenesis in others [65–67]. 
Hence, the following question arises: what are the reasons 
underlying the “ambiguity” of Bcl-B in carcinogenesis?

It is well known that evasion of cell death is one of the 
hallmarks of cancer that can be achieved by increased 
expression of the antiapoptotic Bcl-2 family proteins [1, 

Fig. 2 The regulation of Bcl-B and its participation in programmed cell death. P – phosphorylated form of the Parkin protein; Ub – ubiquitin. The figure 
was prepared by using the elements from Servier Medical Art, which is licensed under a Creative Commons Attribution 3.0 Unported License
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68]. Indeed, upregulated Bcl-B levels are responsible for 
tumor promotion in cases of breast cancer [62], mela-
noma [50, 63], and multiple melanoma (MM) [69]. At the 
same time, the Bcl-B level correlates with a positive prog-
nosis in patients with HCC and gastric cancer [70, 71]. 
Moreover, this protein blocks cell migration, angiogen-
esis, and metastasis, thereby, serving as a oncosuppressor 
in HCC [70]. How might this be possible?

First, it could be associated with the “apoptotic dual-
ism” of Bcl-B (Fig.  1). Besides its prosurvival activity, 
Bcl-B is also involved in the regulation of autophagy and 
Ca2+ signaling, as discussed above. Indeed, Bcl-B can 
stimulate autophagy in HCC [66], an action that could 
explain its tumor suppressor activity in this cancer type. 
Second, the potential mutations in the protein struc-
ture of Bcl-B or BCL2L10 polymorphisms could abate 
its antiapoptotic activity. For example, a BCL2L10 single 
nucleotide polymorphism (rs2231292, Leu11Arg), which 
is predicted to be a biomarker of a favorable outcome, 
has been observed in patients with breast and rectal can-
cer. It leads to disturbance of the interactions between 
BCL2L10 and IP3R that, in turn, facilitates Ca2+ release 
from the ER and activation of Ca2+-dependent cell death 
[72, 73]. Additionally, patients with this BCL2L10 poly-
morphism have a diminished risk of the development 
de novo MDS [74]. Third, epigenetic regulation of Bcl-B 
has great significance in tumorigenesis: Methylation of 
the gene could lead to silenced or reduced expression of 
this protein in HCC [66] and gastric cancer [65, 75, 76]. 
Finally, a decrease in level of one antiapoptotic protein 
can be compensated for by an increase in the level of 
another prosurvival partner, a phenomenon that has been 
proved in various in vitro and in vivo models. Therefore, 
mutant cells might contain “low” levels of Bcl-B and 
“high” levels of Bcl-2, Bcl-xL, Mcl-1, etc. Indeed, the sur-
vival of various cancer cells is “dependent” on distinct 
antiapoptotic proteins [1, 2, 77, 78].

Conclusions
Bcl-B/Bcl-2L10 is a multifaceted protein that exerts both 
pro- and antiapoptotic activities, allowing it to act as an 
oncogene as well as an oncosuppressor in different can-
cer types. These “dual” activities are possibly associated 
with its negative epigenetic regulation, altered struc-
ture due to gene polymorphism, and regulation of other 
types of PCD. Some data suggest that Bcl-B is involved 
in autophagy [19, 35] and Ca2+-mediated apoptosis 
[39, 40]. This protein can probably control other types 
of PCD, an eventuality that should be elucidated in the 
near future. Bcl-B participates in oogenesis and embryo-
genesis, but its knockout in mice does not lead to any 
negative effects [23], a finding that could be promising 
in the context of Bcl-B targeting. At present, there is lit-
tle data about Bcl-B inhibitors. This protein is prone to 

proteasomal degradation and could be suppressed indi-
rectly [60, 61]. Several compounds have been reported 
to directly suppress Bcl-B by disrupting complexes with 
proapoptotic Bcl-2 family proteins in silico and in vitro 
[79–82]. Gambogic acid and gossypol, non-selective 
inhibitors of antiapoptotic Bcl-2 family proteins, can bind 
to Bcl-B [83, 84]. Importantly, high Bcl-B levels contrib-
ute to the development of acquired resistance to various 
chemotherapeutics, including camptotecin (a topoisom-
erase inhibitor) [85], busulfan (an alkylating agent) [86], 
ABT-737 (a non-selective BH3 mimetic) [50, 87, 88], aza-
cytidine (a hypomethylating agent) [64, 89], and cisplatin 
and dacarbazine (alkylating agents) [50]. Therefore, Bcl-B 
could be considered an important prognostic marker in 
cancer. Moreover, potential blockade of Bcl-B in combi-
nation with chemotherapeutics or targeted therapy could 
be a promising anticancer strategy that prevents the 
appearance of acquired drug resistance and diminishes 
the possible toxic effects. Additionally, increased Bcl-B 
gene expression is related to some non-cancer diseases 
such as toxic epidermal necrolysis [55, 56], affective psy-
chosis [90], and cardiac disorders [91]. To conclude, there 
is no doubt that Bcl-B plays a role in normal physiologi-
cal conditions and pathologies. Further investigation will 
be able to resolve the current contradictions and make 
Bcl-B a more “understandable” protein.
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