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Abstract 

Background Although the genome of Saccharomyces cerevisiae (S. cerevisiae) was the first one of a eukaryote organ-
ism that was fully sequenced (in 1996), a complete understanding of the potential of encoded biomolecular mecha-
nisms has not yet been achieved. Here, we wish to quantify how far the goal of a full list of S. cerevisiae gene functions 
still is.

Results The scientific literature about S. cerevisiae protein-coding genes has been mapped onto the yeast genome 
via the mentioning of names for genomic regions in scientific publications. The match was quantified with the ratio 
of a given gene name’s occurrences to those of any gene names in the article. We find that ~ 230 elite genes with ≥ 75 
full publication equivalents (FPEs, FPE = 1 is an idealized publication referring to just a single gene) command ~ 45% 
of all literature. At the same time, about two thirds of the genes (each with less than 10 FPEs) are described in just 12% 
of the literature (in average each such gene has just ~ 1.5% of the literature of an elite gene). About 600 genes have 
not been mentioned in any dedicated article. Compared with other groups of genes, the literature growth rates were 
highest for uncharacterized or understudied genes until late nineties of the twentieth century. Yet, these growth rates 
deteriorated and became negative thereafter. Thus, yeast function discovery for previously uncharacterized genes 
has returned to the level of ~ 1980. At the same time, literature for anyhow well-studied genes (with a threshold T10 
(≥ 10 FPEs) and higher) remains steadily growing.

Conclusions Did the early full genome sequencing of yeast boost gene function discovery? The data proves 
that the moment of publishing the full genome in reality coincides with the onset of decline of gene function discov-
ery for previously uncharacterized genes. If the current status of literature about yeast molecular mechanisms can be 
extrapolated into the future, it will take about another ~ 50 years to complete the yeast gene function list. We found 
that a small group of scientific journals contributed extraordinarily to publishing early reports relevant to yeast gene 
function discoveries.
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Introduction
The choice of S. cerevisiae as the first fully genome-
sequenced eukaryote in 1996 [1] was not by accident. 
Yeast is an extensively studied, excellent model organ-
ism for human biology since about a third of its genes 
has obvious orthologues in human [2] and it shares a very 
similar internal cell structure. Yeast is a beloved model 
for human cellular aging [3]. There are also many techni-
cal advantages such as (1) easy, cheap culturing and fast 
growth in the lab with doubling in < 2  h, (2) established 
techniques for genetic manipulation with simple gene 
knockouts in the haploid phase, (3) usage as model for 
meiotic cell division, and (4) the small fraction of non-
protein-coding DNA in the genome.

In 1996, the bright future of yeast systems biology, “a 
new microbiology which … will enable the effective study 
of global physiological and metabolic problems involv-
ing a whole series of gene products” [4] was seen in near 
reach. Yet about a decade later, Pena-Castillo and Hughes 
[5] struggled with the disappointment that far more than 
1000 protein-coding genes in yeast remain functionally 
uncharacterized. This implies that whole pathways and 
gene subnetworks are still in the dark and any systemic 
view must be limited if it is at all possible. Pena-Castillo 
and Hughes [5] tried to find an explanation why pro-
gress is so slow without finding an answer that satisfied 
themselves. Nevertheless, they extrapolated from their 
data that an almost complete gene function list for yeast 
should be achieved in ~ 2020.

At the time of writing this work (June 2023), the pub-
lication of the first yeast genome is more than a quarter 
of a century old. Yet, the Saccharomyces Genome Data-
base [6–8] still lists 932 open reading frames (ORFs) 
coding for a “protein with unknown function. Clearly, 
the prediction of Pena-Castillo and Hughes [5] did not 
materialize.

In this work, we quantify the progress of gene function 
discovery over historical periods using a methodology 
applied previously to the human genome [9] as well as to 
the Escherichia coli (E. coli) pangenome [10]. We mapped 
the available scientific literature onto the yeast genome 
by using gene/protein/RNA names mentioned in the 
articles’ titles, abstracts, and full texts (if available). Since 
rarely an article talks only about one gene, we score each 
article for a given genomic entity with a fractional count 
as the ratio of references to a given gene in the text and 
the number of mentioning any gene. The sum of these 
scores for a given gene measures the available scientific 
literature in full publication equivalents (FPE), in terms 
of idealized articles reporting only about this one gene.

Our results not only show that there is a group of a 
few hundred “elite” yeast genes that command a dispro-
portionate share of the total literature when about two 

thirds of the yeast genes appear seriously understud-
ied. Hundreds of yeast gene names are not mentioned 
in any article. More importantly, we see that the rate 
of appearance of previously not mentioned yeast gene 
names in the literature dropped after the late 90-ies of 
the twentieth century and especially dramatically and 
permanently after ~ 2010, a development that Pena-
Castillo and Hughes [5] could not foresee in 2007. The 
current rate of function discovery reports for previously 
not mentioned yeast genes is at the level of ~ 1980.

Results
Coverage of the S. cerevisiae gene function space 
by the available scientific literature
About 600,000 fractional counts for yeast genes (Addi-
tional file  3: Files 1 and 2) have been extracted from 
about 100,000 scientific texts (up to the qualifying date 
19th of June 2023, for the collection of the text corpus). 
We reused the named entity recognition engine, the S. 
cerevisiae gene list (with a list of 6691 protein-coding 
genes), the keyword and synonym dictionary and the 
deduction rule system from the STRING database ver-
sion 11.5 [11–13] for the automated mapping. Our 
methodology is described in more detail in the “Meth-
ods” section.

Table  1 presents the results of mapping the available 
literature on the genome of baker’s yeast. We find 6051 
out of 6691 protein-coding genes mentioned at least once 
in a dedicated scientific article. The genome is extremely 
unevenly reflected in the literature. Just 235 “elite” genes, 
each with at least 75 FPEs (less than 4% of all protein-
coding genes), the group of most intensively studied yeast 
genomic entities, are covered by ~ 45% of all relevant arti-
cles. Thus, every elite gene has ~ 0.2% of the relevant lit-
erature (~ 200 FPEs) on average.

At the other end of the spectrum, our automated pro-
cedure did not find any article for 640 genes (~ 10% of 
the genome). Given the experience with the E. coli pro-
ject [10], we think that a manual search might locate an 
article or two for some of them, which our conservative 
rule dictionary that is aimed at suppressing false-posi-
tive assignments due to ambiguous name usage might 
have overseen. So, the true number of genes without any 
article might be closer to 600. Yet, this is smaller than 
(though of a similar order of magnitude as) the number 
or 932 ORFs listed as coding for a “protein of unknown 
function” in the SGD database [6, 7].

For a further 4120 genes (~ 62% of the genome), the 
share of the total FPEs is just ~ 12%. The average litera-
ture share per gene is 0.003%. Thus, a gene in this cat-
egory has just about 1.5% of the literature in average that 
an “elite” gene has.
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Changes of literature coverage of yeast genes in various 
historical periods
Figure 1 illustrates how many genes crossed certain FPE 
thresholds each year (see Additional file 3: File 3 for the 
respective data). For example, number T0 implies that 
how many genes have been mentioned in the literature 
for the first time in those years. The thresholds T1, T5, 
T10, …, T75, T100, and T500 mean that the respective 
genes each individually accumulated more than 1, 5, 
10, …, 75, 100, or 500 FPEs in that year. Three historical 

periods regarding the gene function discovery dynam-
ics can easily distinguished visually: (phase 1) a period of 
moderate growth until ~ 1990, (phase 2) a period of dra-
matic expansion until around 2000 and (phase 3) a dras-
tic decline of new gene function discovery and refocus of 
research onto rather well-studied genes in the twenty-
first century.

The dynamics is most expressed for T0. A steep 
increase up to the late 90-ties is followed by an abrupt 
drop 1997–2000 and another catastrophic one ~ 2010 

Table 1 The number of S. cerevisiae genes as well as sums of literature scores in various FPE ranges

This table lists the results of the automated mapping of publications onto the genome of baker’s yeast. We present the total number of genes in the respective FPE 
range at the time of this study (“#Genes”). We added a row for the 640 genes not specifically mentioned in any article about S. cerevisiae published until our cut-off 
date. Also, we computed the sum of the literature score for all genes in the respective FPE range (“Literature Score”). The total literature score 100,048 is equal to the 
total number of articles found with referencing a yeast gene in the main text, abstract or title. The FPE score range is further classified into six categories and the total 
number of genes in that category is provided (“ΣGenes”)

FPE score range #Genes Percentage of the total 
6691 genes (%)

Literature score Percentage of 
total score (%)

ƩGenes Category

0 640 9.57 0.00 0.00 640 Not studied

0 < x < 1 1447 21.63 395.02 0.39 4120 Very understudied

1 ≤ x < 5 1714 25.62 4622.60 4.62

5 ≤ x < 10 959 14.33 6886.99 6.88

10 ≤ x < 15 530 7.92 6542.36 6.54 1062 Understudied

15 ≤ x < 20 307 4.59 5297.69 5.30

20 ≤ x < 25 225 3.36 5014.21 5.01

25 ≤ x < 30 152 2.27 4152.95 4.15 344 Moderately studied

30 ≤ x < 35 103 1.54 3355.06 3.35

35 ≤ x < 40 89 1.33 3318.26 3.32

40 ≤ x < 45 71 1.06 2999.29 3.00 290 Intensively studied

45 ≤ x < 50 61 0.91 2908.25 2.91

50 ≤ x < 75 158 2.36 9670.73 9.67

75 ≤ x < 100 66 0.99 5688.36 5.69 235 Very intensively studied

100 ≤ x < 500 155 2.32 26,730.43 26.72

x ≥ 500 14 0.21 12,465.79 12.46

Total 6691 100,048 –

Fig. 1 Gene function discovery rate from 1960 to 2022 for S. cerevisiae. The gene function discovery rate measured as the number of new genes 
first mentioned (T0) or crossing a specific threshold of aggregated FPEs (T1, T5, T10, …, T50, T75, T100 and T500) from year 1960 until year 2022
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with further, more moderate decrease thereafter. 
Whereas ~ 300 new yeast genes appeared in the literature 
every year in the late 90-ies, this number changed to dis-
mal ~ 30 a quarter of a century later. The number of first 
reports on previously not mentioned genes in the past 
few years resembles the time ~ 1980 (Additional file  3: 
File 3).

Similarly, the curve for T1 (for T5) exhibits moder-
ate growth until ~ 1990 (~ 2005), expedited increase 
until ~ 2000 (~ 2013) and dramatic decline thereafter. In 
the past few years (2020–2023), the number of new genes 
that reached T1 level is more like the status from the late 
80-ies of last century. The T5 curve in 2020–2022 is more 
similar to the level from ~ 2008 (Additional file 3: File 3).

In contrast, the curves for T10–T35 show moder-
ate growth until ~ 2007 and accelerated accumulation of 
additional new genes anytime thereafter. The respective 
annual numbers of genes climbing into categories T40–
T500 grow steadily throughout the whole period of study.

This visual impression is supported by quantita-
tive analyses with a linear regression model (Table  2). 
Whereas the slopes of the regression lines are by far 
the highest for T0, T1 and T5 (the literature coverage 
categories of uncharacterized or understudied genes) in 

phase 1, they get further boosted in phase 2 but decline 
in phase 3. For T5, T1 and, most dramatically, for T0, 
the slopes turn even negative indicating that the scale 
of new yeast gene function discovery has largely been 
reduced, even collapsed in the twenty-first century. 
For all other FPE threshold categories, there is a vigor-
ous, increasing supply of new genes every year. Thus, 
we must conclude that research leading to more incre-
mental improvement of functional characterization 
of generally well-studied genes is ongoing and rather 
expanding.

The accelerated growth of the number of genes in T10 
and above during the period of decline for T0-T5 high-
lights the critical turning point in the research dedicated 
to the yeast genes’ functions. This dichotomy suggests 
a better risk-versus-success profile in research projects 
once the knowledge threshold associated with T10 has 
been achieved. This observation raises the question 
of how many articles are needed for the transition of a 
gene towards T10 status (see Additional file 3: File 4 for 
data). In Table 3, we show the actual number of research 
articles that various genes required to achieve a certain 
FPE threshold. The border between T5 and T10 genes 
is at ~ 30 articles. Thus, the floodgates for a dramatic 

Table 2 The trend of literature coverage for S. cerevisiae genes in various FPE score thresholds

The letter “T” in abbreviations “T0, T1, etc.” means “threshold” that is applied to FPE values (see ranges in first column of Table 1). The dependency of the number 
of new genes in the respective FPE range as a function of the year is analyzed with linear regression methods. We omitted 2022 from this analysis because of the 
extremely small numbers, an artifact that might be caused due to COVID-19 restrictions. The trend of changes is generally identified through three phases, i. e. Phase 
1, Phase 2 and Phase 3. The slopes,  R2 and P-value in time intervals are listed based on linear regression model yi ~ C + b.xi; where yi is the total number of new genes 
reaching the specific FPE threshold at year i; xi is the year i; b is the slope and C is intercept. A dash “- “ denotes not enough data. The slope (b) indicates the rate 
increase/decrease of the total number of new genes reaching a specific FPE score threshold throughout the years. A positive slope indicates that, as a trend, the total 
number of new genes reaching a specific FPE score threshold tends to be larger than in the previous year (or from year to year); a negative slope indicates otherwise. 
 R2 is the square of correlation ρ or the goodness of fit of the linear regression. P-value is the statistical significance of the slope. The total number of genes reaching 
the specific FPE score threshold can then be estimated by: Ni ~ N(i−1) + yi; where Ni and N(i−1) are the total number of genes reaching the specific FPE score threshold at 
year i and (i−1) respectively

FPE score 
threshold

Phase 1—moderate growth Phase 2—accelerated growth Phase 3—decline

Slope R2 P-value Years Slope R2 P-value Years Slope R2 P-value Years

T0 3.58 0.73 1.03E−07 1965–1989 ↑ 24.35 0.87 2.77E−04 1989–1997 ↑↑ −12.31 0.94 1.96E−15 1997–2021 ↓
T1 2.69 0.85 1.12E−10 1965–1989 ↑ 7.90 0.83 3.95E−05 1989–2000 ↑↑ −3.65 0.62 1.30E−05 2000–2021 ↓
T5 2.69 0.89 1.02E−15 1975–2005 ↑ 10.17 0.86 3.01E−04 2005–2013 ↑↑ −4.20 0.40 6.73E−02 2013–2021 ↓
T10 1.78 0.90 2.55E−14 1980–2007 ↑ 2.72 0.48 4.27E−03 2007–2021 ↑↑ – – – –
T15 1.13 0.83 1.32E−11 1980–2007 ↑ 2.65 0.51 2.78E−03 2007–2021 ↑↑ – – – –
T20 0.88 0.88 2.84E−13 1980–2007 ↑ 3.14 0.60 6.49E−04 2007–2021 ↑↑ – – –
T25 0.70 0.79 2.70E−10 1980–2007 ↑ 2.38 0.79 9.49E−06 2007–2021 ↑↑ – – – –
T30 0.54 0.82 4.29E−11 1980–2007 ↑ 2.51 0.82 3.44E−06 2007–2021 ↑↑ – – –
T35 0.47 0.76 1.83E−09 1980–2007 ↑ 2.45 0.76 2.17E−05 2007–2021 ↑↑ – – – –
T40 1.86 0.91 8.33E−12 2000–2021 ↑ – – – – – – – –
T45 1.63 0.91 5.39E−12 2000–2021 ↑ – – – – – – – –
T50 1.40 0.81 1.09E−08 2000–2021 ↑ – – – – – – – –
T75 0.98 0.75 2.09E−07 2000–2021 ↑ – – – – – – – –
T100 0.83 0.85 7.91E−10 2000–2021 ↑ – – – – – – – –
T500 0.09 0.51 1.87E−04 2000–2021 ↑ – – – – – – – –
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increase of the gene’s literature corpus will be opened 
once about 30 articles have been published on it.

Table  4 shows how many years genes in various FPE 
threshold brackets needed to reach this publication sta-
tus. Clearly, the general level of available research tech-
nology is of significance here. For genes that reached 
T0 after 2000 (wide availability of omics technologies) 
or after 1989 (routine gene sequencing is established), 
higher T-thresholds (> T75) were reached ~ 15 years ear-
lier than for genes that had their T0 event in/after 1965 
or even before.

Genes that have been identified from year 1965 
onwards needed approximately 20  years to achieve the 
T10 threshold, whereas for genes that have occurred in 
the literature only after the year 2000 onwards, it still 
takes approximately 14  years to achieve the same T10 
threshold. It is interesting to note that the average num-
ber of years to achieve even much higher FPE thresholds 
for genes first mentioned in year 2000 onwards is only a 
few years (~ 3 years) longer than the time to achieve the 
T10 threshold, which further suggests that T10 appears 
be the threshold critical to overcome scientific risks and 
technical problems and to trigger more incremental type 
of research for those yeast genes.

The only exception from the general speed-up in 
research progress appears to be T1. The mean number 
of years to reach level T1 after T0 has been achieved 
remains essentially constant (between 6.45 and 6.78). 

Thus, the technology progress has not much effect at this 
level of gene function understanding and, for each gene, 
some ingenious ideas (the critical hindrance) seem to be 
required.

These data should be seen at the background of the 
total literature corpus published about yeast genes over 
the years (Fig.  2). The number of new relevant publica-
tions (red curve) knows only an upwards trend over the 
years (except for 2022, most likely a delayed effect of the 
work-from-home policies during COVID-19 that pre-
vented laboratory experimentation). Clearly, there has 
been a saturation in the number of genes (blue curve) 
mentioned in any article of that year since ~ 2007 and a 
steep increase of the number of articles per mentioned 
gene since the same year. Thus, any decline in gene func-
tion discovery is not due to an overall decrease of scien-
tific articles published.

Contribution of various scientific journals to the yeast gene 
function discovery
As a side effect of our literature survey, each fractional 
count for a given gene and a given journal article can be 
associated with any of the 15 FPE threshold qualifiers T0, 
T1, …, and T500. If summed up for a given journal, we 
can calculate how many T0-, T1-, …, T100-, or T500-
type publications a journal has accumulated over certain 
historical periods. Thus, each journal can be character-
ized by a 15-dimensional vector with FPE values corre-
sponding to the T-thresholds (Additional file 3: File 5).

We analysed the spatial association of the journals 
in the 15-dimensional T-space with principal compo-
nent analysis. We find that ~ 90% of the data variation is 
explained by the first principal component, ~ 8% by the 
second, ~ 1% by the third. The top loadings for the first 
principal component come from T10 to T75 (correlation 
coefficients > 0.95 with any of these coordinates; Addi-
tional file 1: Table S1). The second principal component 
is largely influenced by T0, T1, T100 and T500 and cor-
relates with the T0-T500 difference (correlation coeffi-
cient ~ 0.98; Additional file 1: Table S1).

The relevant journals in our text corpus are shown in 
their projections onto the plane of the first and second 
principal components (Fig.  3, Additional file  3: File 5). 
Whereas the first principal component is rather affected 
by the total number of papers about yeast biomolecular 
mechanisms, the second principal component shows 
whether the journal has an edge in publishing early (T0 
or T1) papers or late (T100 or T500) papers about yeast 
genes.

A few journals are clearly outliers compared to the 
crowd (outside the bracket [− 10, 10] for PC2). We find 
that “The Journal of Biological Chemistry” (with 8.9% of 
all T0 and 7.2% of all T1 yeast gene papers in history), 

Table 3 The real number of scientific articles necessary to 
generate a literature body of given FPE intervals about a S. 
cerevisiae gene

The letter “T” in abbreviations “T0, T1, etc.” stands for “threshold” applied to FPE 
values (compare with Table 2). We list the minimal (Min), maximal (Max), median 
and mean (together with the respective standard deviation—SD) numbers of 
articles associated with genes in the year when they crossed certain literature 
thresholds. As a trend, the number of actual articles is 2–5 times larger than the 
FPE value itself

Tindex Min Max Median Mean SD

T1 1 49 4 5.52 5.22

T5 5 104 20 24.94 16.35

T10 10 317 42 47.72 27.92

T15 16 589 62 70.20 39.69

T20 22 897 82 92.48 53.33

T25 28 1168 102.5 114.50 69.50

T30 34 1514 122 134.51 87.02

T35 39 1165 146 154.03 77.88

T40 44 1387 167 176.80 91.91

T45 50 1594 186.5 196.53 104.07

T50 56 1821 199 216.56 119.63

T75 85 834 304 318.19 130.12

T100 116 1254 391 432.92 197.87

T500 1214 2941 2200 2164.86 619.38
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“Molecular and Cellular Biology” (with 8% of all T0 and 
5.3% of all T1 papers), “The Journal of Cell Biology” (with 
5.7% of all T0 and 3.7% of all T1 papers)) and “Yeast” 
(with 5.7% of all T0 and 2.6% of all T1 papers) are the 
forerunners of publishing T0 + T1 papers about yeast 
genes. The journals “PLOS One”, “Scientific Reports”, 
“Nature Communications” and “International Journal of 
Molecular Science” are comparatively strong with T500 
and T100 publications.

For each of the eight selected journals, Additional file 2: 
Fig. 3A–H shows the components of the T-threshold vec-
tor. Here, the y-axis value for a given T-threshold is the 
fraction of all T-threshold publications of the respective 
journal from the total pool of the same T-threshold pub-
lications in any journal (calculated in terms of FPEs). We 
also show a regression line as indicator of the trend along 
the T-threshold (Tindex) vectors together with the slope 
and the significance. The qualitative difference between 

Table 4 Years necessary to generate a literature body of given FPE intervals about a S. cerevisiae gene

The letter “T” in abbreviations “T0, T1, etc.” stands for “threshold” applied to FPE values (compare with Table 2). We list the minimal (Min), maximal (Max), median and 
mean (together with the respective standard deviation—SD) numbers of years needed to accumulate the necessary FPEs for a given gene relative to the gene’s 
year for T0. As the research technology has dramatically improved compared with the time when the first genes achieved T0 (the first relevant recorded publication 
PMID:19872702 about invertase is from 1932), we also give the data for all eligible yeast genes as well as separately for those with their T0 event beginning with 
1965 (molecular biology got established), with 1989 (gene sequencing became routine) and after 2000 (omics technologies got widely available). Notably, the years 
necessary for getting into higher T ranges tend to get smaller for more recently studied genes but still remain well above a decade (~ 15 years). Notably, the median 
number of years needed to make a threshold dropped more dramatically for higher literature thresholds (> 15 years for T75, T100 and T500 versus a drop by just 
5–10 years for medium T-thresholds). The data emphasizes that, indeed, technological developments such as the introduction of omics technologies had a positive 
effect on the progress in gene function discovery

Tindex All Genes Genes with T0 in year 1965 and later

Min Max Mean Median SD Min Max Mean Median SD

T1 0 47 6.78 5 6.76 0 47 6.75 5 6.69

T5 1 50 15.78 15 8.32 1 50 15.70 15 8.18

T10 2 66 19.78 19 8.95 2 54 19.63 19 8.64

T15 4 73 22.01 21 9.26 4 52 21.79 21 8.75

T20 5 79 23.58 22 9.49 5 49 23.26 22 8.70

T25 6 83 24.54 23 9.78 6 51 24.10 23 8.61

T30 7 85 25.81 24.5 10.40 7 54 25.29 24 8.96

T35 8 88 26.67 25 10.60 8 53 26.04 25 8.80

T40 8 88 27.17 26 10.37 8 53 26.53 26 8.52

T45 9 89 27.91 27 10.59 9 54 27.23 27 8.59

T50 9 88 28.29 28 10.54 9 55 27.66 27 8.70

T75 12 87 29.57 30 9.32 12 52 29.28 29 8.53

T100 14 89 30.79 30 9.12 14 55 30.36 30 7.91

T500 28 45 36.57 36 4.85 28 45 36.57 36 4.85

Tindex Genes with T0 in year 1989 and later Genes with T0 in year 2000 and later

Min Max Mean Median SD Min Max Mean Median SD

T1 0 30 6.45 5 5.99 0 22 6.75 6 5.05

T5 1 32 14.25 14 6.32 1 22 12.53 13 4.34

T10 3 32 17.28 18 6.01 3 22 14.19 14 4.20

T15 4 33 18.89 19 5.96 5 22 14.29 14.5 4.14

T20 5 32 19.94 20 5.84 6 22 13.93 14 3.80

T25 6 33 20.52 21 5.53 7 21 14.85 15 3.60

T30 7 33 20.97 21.5 5.47 8 22 15.26 15 3.65

T35 8 33 21.44 22 5.43 8 21 15.70 16 3.82

T40 9 33 21.90 22 5.42 9 21 16.36 17 3.91

T45 10 33 22.24 23 5.53 10 21 15.60 16 3.60

T50 10 33 21.90 22 5.31 10 21 15.92 15 4.07

T75 13 33 22.13 21 4.75 13 18 16.00 17 2.24

T100 15 32 23.55 23 4.44 15 21 17.25 16.5 2.63

T500 – – – – – – – – – –
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Fig. 2 The number of mentioned genes per year in relation to the total number publications with Yeast genes from year 1932–2022. We 
show the dynamics of the yeast gene function-related publications in connection with the number of genes mentioned per year. The number 
of publications (left y-axis) for each year is represented by the red line, whereas the number of genes mentioned per year (right y-axis) is shown 
by the blue line. Publication about yeast genes started to become frequent beginning with the year 1965. After 1996, we observed an increase 
in the number of genes mentioned per year, which coincides with the release of the first genome sequence of yeast. This phenomenon saturated 
around year 2010 where the number of publications keeps growing while the number of genes mentioned have plateaued

Fig. 3 Contribution of various scientific journals to the literature about functions of S. cerevisiae genes. The journals in our text corpus 
that contribute to the literature about baker’s yeast gene functions (minimum 500 scientific articles) can be characterized by a 15-dimensional 
vector of T-thresholds with the respective aggregated FPEs (T1, T5, T10, …, T50, T75, T100 and T500). We show these vectors in their projections 
onto the plane of the first (PC1, x-axis) and second (PC2, y-axis) principal components (principal component analysis for all journals found). The first 
principal component reflects the total number of papers about yeast biomolecular mechanisms published by the journal. The second principal 
component shows whether the journal is strong in publishing early (T0 or T1; with large positive PC2) papers or late (T100 or T500; with negative 
PC2 having large absolute value) papers about yeast genes
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the two groups of journals is visually striking. Whereas 
the first four journals show a clear, significant decline 
towards T500, the four remaining ones exhibit a convinc-
ing rise towards higher T-thresholds.

A thorough investigation of the connection between 
the journal’s impact factor (IF) and the journals’ role in 
publishing early research about genes’ function is beyond 
the scope of this work. Yet, a quick analysis for the most 
extremely positioned journals in Fig. 3 shows that there 
might be some trend.

The IFs (2-year impact) of the journals belonging to 
the first group are 5.48, 8.08, 5.09 and 3.32, respectively 
(taken from [14] at the time of writing; the average is 
5.49). Those for the second group are 17.00, 5.00, 3.75, 
and 6.21 (average 8.16). Obviously, the IFs in the latter 
group tend to be higher (yet the T-test is non-significant). 
Apparently, there is some trend that journals with higher 
IF are rather part of the second group of journals. At the 
same time, avoiding publishing early gene function dis-
covery papers does not guarantee a high impact IF.

Discussion
Funding for early full genome sequencing of model 
organisms was justified with the argument that knowl-
edge of the whole genome sequence would enable sys-
temic approaches towards the network of pathways and 
gene networks due to the completeness of the gene list 
[4]. Clearly, this requires the availability of the list of all 
gene functions including their hierarchical description 
with all molecular, cellular and phenotypic functional 
aspects (see Fig. 1 in [15]). Few would have guessed that, 
even many decades later, the yeast gene function list 
remains largely incomplete. Even more, the thrust of the 
scientific community to solve these problems seems to be 
diminishing rather than gaining momentum.

Neither with the skew in the literature towards a few 
elite genes nor with the decline of new gene function 
discovery, yeast is a special organism. The situation is 
similar for other model organism such as E. coli [10] or 
human [9, 16, 17].

It is especially worth noting that the decline of new 
gene function discovery happens not at the background 
of a general decline of yeast research. As shown in Fig. 2, 
the academic research machine continues humming and 
churns out an ever-increasing number of papers on bio-
molecular mechanisms involving yeast genes.

Our data allow us to estimate the time needed to 
achieve a complete yeast protein-coding gene function 
list under the assumption that the status from the recent 
past can be extrapolated into the future. During the past 
few years, the number of newly appearing yeast gene 
names (T0 articles) in the scientific literature was in the 
range ~ 30 (Additional file  3: File 3). If this value does 

not decrease further (an apparently optimistic assump-
tion given the trend during the last ~ 25  years), it will 
take another > 20 years (until ~ 2050?) before every yeast 
gene has a least a single literature mentioning besides any 
occurrences in data sheets from high-throughput omics 
studies, genetic/mutation screens, or large-scale subcel-
lular localization assays.

Further, the threshold T5 (5 FPEs correspond to ~ 20 
publications involving the gene (see Table 3 and refs. [9, 
10]), a somehow reasonable status of research success) is 
crossed by ~ 70 yeast genes every year in the more recent 
history. With currently almost 4000 genes below T5, 
it will require another ~ 55 years to reach a decent level 
of function description for all yeast genes; thus, we can 
speak about ~ 2080 until the last remainders are covered. 
T10 is crossed for ~ 100 genes per year. Therefore, it will 
take ~ 50  years more from today for the ~ 4800 genes to 
get there.

Pena-Castillo and Hughes [5] tried to investigate sev-
eral possible causes that might delay yeast gene function 
discovery. Among the questions, they considered:

1. Are uncharacterized genes real?
2. Are the uncharacterized genes too new to have been 

studied?
3. Do uncharacterized genes have any distinguishing 

characteristics in large-scale analyses?
4. Are the uncharacterized genes needed only under 

specific conditions that are not easily available during 
standard laboratory experiments?

The authors conclude that, most likely, the overwhelm-
ing number of uncharacterized yeast genes is real though 
the identification of genes coding small [18] and orphan 
[19] proteins is difficult. The investigations of uncharac-
terized genes are hampered by functional redundancy, 
lack of strong phenotype or even absence of expression 
in standard laboratory experiments. Yet, the advance in 
research technology, especially of omics approaches and 
bioinformatics, should and does give hints that eventually 
should lead to function discovery [20].

Our data in Table  4 indeed factually supports this 
insight. Omics studies can broadly assign uncharacter-
ized genes to processes and phenotypes and, thus, direct 
follow-up research. For example in the work of Wood 
et  al. [21], the authors identify groups of conserved but 
still unstudied proteins in Saccharomyces pombe (fis-
sion yeast) based on a combination of large-scale experi-
mental data and bioinformatics analyses. Ingenuity and 
enthusiasm of researchers today is certainly not smaller 
than several decades years ago when people struggled 
with truly primitive research tools as we understand it 
now [20]. There are efforts to launch research initiatives 
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to discover functions of unstudied genes based on omics 
findings [22, 23].

Nevertheless, yeast gene function discovery has come 
out of fashion when many hundreds of yeast genes still 
require research attention. The fact that the decline of 
new function discovery happens at the background of 
an expanding academic research capacity certified by 
the continuously growing number of relevant publica-
tions indicates that other, not intrinsically scientific fac-
tors have a role in the change. Similar trends have been 
observed in many other areas of science [24–26]. Besides 
some lamenting, the signs of decline have been rather 
considered a natural phenomenon than a man-made 
societal change [27]. Polite comments in previous publi-
cations hint towards intrinsic transformations that have 
distorted the academic system in the past five decades 
and have driven it increasingly ineffective [9, 10, 28, 29].

Our data shows that new gene function discovery is a 
process that occupies ~ 15  years or more (arrival at T10 
or better) after the first publication has appeared. Almost 
half of this time (~ 7 years) is required for the gene just 
to get from label T0 to T1. Once the T10 threshold is 
reached, a body of ~ 30 papers is created with associated 
research costs not below USD 8 million.

If these numbers are compared with typical contractual 
conditions of young faculty members and their grants 
(time slots typically ≤ 5 years and grant sizes per PI in the 
order of a few USD 100,000 at best), it becomes clear that 
they expose themselves to great existential risk if they 
start working on genes that really attracted no attention 
before.

Maintaining a research team financially is a difficult 
task for a young principal investigator and academic 
research grants are the main source. For those in the 
know, getting funding for research on uncharacterized 
genes just for the purpose of finding the function is very 
difficult if only for the reason of absence of preliminary 
data or the unclear future application of the result.

The evaluation of journal publications with publicity 
metrics (such as IFs that in reality measure the size of the 
audience and the time of reaction on the publication of 
the original article) further complicates the path for gene 
function discovery. Our data does not provide any evi-
dence that publishing first papers about a gene adds to 
the IF of a journal. Thus, the pressure for a high IF paper 
also drives researchers away from working on uncharac-
terized genes as, at least at the beginning, fewer people 
will be interested in their work, and it will take usually 
more than two years for any follow-up paper to cite 
them. The more laudable are those journals who jump in 
to support the early results reaching the community.

Did the full genome sequencing of yeast boost gene 
function discovery? Unfortunately, the promises that 

justified the investment for yeast’s genome sequencing 
did not materialize. The data proves not only that there 
was no boost from the public availability of all gene 
sequences. Tragically, the moment of publishing the full 
genome sequence in reality coincides with the onset of 
decline of gene function discovery for previously unchar-
acterized genes. Even more disappointing is the insight 
that, if the current trends for the literature about yeast 
molecular mechanisms can be extrapolated into the 
future, it will take about another 50 years to complete the 
yeast gene function list.

Methods
Technically, this work is similar to previously published 
research [9, 10]. In brief, we reused the text corpus, gene 
name dictionaries and the mapping procedure from 
version 11.5 of the STRING database [12, 13]. Issues of 
accuracy of the automated assignment procedure are 
discussed in detail in our previous work. To note, for the 
suppression of false-positive assignments, we apply an 
explicit rule system, based on regular expressions and a 
list of blocked names [11], to suppress the detection of 
entity names in target texts when the respective words 
are frequently used have another, normal English mean-
ing. These resources are continuously updated. We used 
the release labelled with the 19th of June 2023.

In accordance with previous work, we rely on fractional 
counting of entity names and sum them up for the deter-
mination of full publication equivalents (FPE). Typically, 
a text document mentions multiple genes/proteins. Each 
paper that mentions at least one gene/protein contributes 
an FPE of 1, which is spread across the mentioned gene/
proteins depending how many times each of them was 
mentioned. Thus, the total fractional count fi for protein 
or gene i is

Here, D is the document set, nij is the number of times 
protein or gene i is mentioned in document j, n•j is total 
number of mentions of any gene/protein in document j.

In our master file (Additional file  3: File 1), each line 
contains a genomic entity name, a publication identifier, 
the publication date, and the fractional count associated 
with that genomic entity name. Herewith, it is straight-
forward to determine the amount of literature published 
about a given genomic entity in certain time periods by 
summing up the respective fractional counts.

The software “R” and Microsoft Excel were applied for 
data manipulation, principal component analysis, and 
further statistical tests.

fi =

j∈D

nij

n · j
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Additional file 1. Table S1. We show the correlation of T-threshold 
(Tindex) coordinates (T0, T1, …, T500) and coordinate differences (T0-T500 
and T1-T500) to PC1 and PC2 based on the journals with at least 500 
relevant articles.

Additional file 2. Figure S1. Explanation of variance of journals’ T-thresh-
old data by principal coordinates. The graph illustrates how much of the 
data variance in the journals T-threshold vectors is explained by which 
principal coordinate. Figure S2. Loadings of principal coordinates PC1 and 
PC2. The loadings of principal coordinates PC1 and PC2 to the T-threshold 
coordinates (Tindex) are shown. Figure S3. Illustration of T-threshold 
vectors for selected journals together with indicative regression lines. The 
figures illustrate the T-threshold (Tindex) vectors for selected journals, the 
outliers in Figure 3 (four journals strong in T0, T1, … publications: “The 
Journal of Biological Chemistry”, “Molecular and Cellular Biology”, “The 
Journal of Cell Biology”, and four journals with overweight of T500, T100, 
T75, … publications: “PLOS One”, “Scientific Reports”, “Nature Communica-
tions” and “International Journal of Molecular Science”). Here, the y-axis 
value for a given T-threshold is the fraction of all T-threshold publications 
of the respective journal from the total pool of the same T-threshold 
publications in any journal (calculated in terms of FPEs). We also show a 
regression line as indicator of the trend along the T-threshold (Tindex) 
vectors together with the slope and the significance. Whereas the first four 
journals show a clear, significant decline towards T500, the four remaining 
ones exhibit a convincing rise towards higher T-thresholds. (A) The Journal 
of Biological Chemistry. (B) Molecular and Cellular Biology. (C) The Journal 
of Cell Biology. (D) Yeast. (E) PLOS One. (F) Scientific Reports. (G) Nature 
Communications. (H) International Journal of Molecular Science.

Additional file 3. File 1. This file lists the association between the gene 
and the article mentioning the gene (defined by the PUBMED ID). Count 
defines the number of times a gene is mentioned in the associated article. 
FPE is the FPE-score of the gene in the associated article. File 2. This file 
lists the yeast-relevant literature items with their publication year. File 3. 
This file lists the number of new genes reaching a specific FPE threshold 
as defined by T-threshold categories throughout the years. File 4. This file 
provides the information of which year the gene (GeneID) is first men-
tioned (First Mentioned). Subsequently, we provide the number of articles 
that have been published for the gene until it reaches a specific FPE 
threshold (T1, T5, T10, ..., T100, T500). The column with "−" value means the 
gene has not achieved that FPE threshold in the study till December 2022. 
File 5. This file provides the list of journals publishing the yeast relevant 
articles until December 2022. The total number of articles for each journal 
is listed. The projected principal components for the 15 T-threshold cat-
egories are given as PC1, PC2 until PC15. Subsequently, the percentage of 
the contributed FPE score for each journal is given for T0 through T500.
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