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Introduction
At present, the decline of male fertility has caused wide-
spread concern. Reasons for reduced reproductive ability 
and even infertility include obesity, diabetes, environ-
mental chemicals and genetic factors [1–4]. Many stud-
ies have reported that air pollutants are key factors 
affecting human reproductive health [5, 6]. Spermato-
genesis is the process to produce male gametes, which 
is a fine-regulated process in which germ cells produce 
mature sperm through a series of proliferation and dif-
ferentiation [7]. During the transformation of spermato-
gonia into sperm, various types of germ cells migrate 
from the basal to the seminiferous lumen, and the inter-
action between germ cells, Sertoli cells, as well as germ 
cells and Sertoli cells playing vital roles for this process. 
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Abstract
Background Male factors-caused decline in total fertility has raised significant concern worldwide. LncRNAs have 
been identified to play various roles in biological systems, including spermatogenesis. This study aimed to explore the 
role of lncRNA5251 in mouse spermatogenesis.

Methods The expression of lncRNA5251 was modulated in mouse testes in vivo or spermatogonial stem cells (C18-4 
cells) in vitro by shRNA.

Results The sperm motility in two generations mice after modulation of lncRNA5251 (muF0 and muF1) was 
decreased significantly after overexpression of lncRNA5251. GO enrichment analysis found that knockdown 
lncRNA5251 increased the expression of genes related to cell junctions, and genes important for spermatogenesis in 
mouse testes. Meanwhile, overexpressing lncRNA5251 decreased the gene and/or protein expression of important 
genes for spermatogenesis and immune pathways in mouse testes. In vitro, knockdown lncRNA5251 increased the 
expression of genes for cell junction, and the protein levels of some cell junction proteins such as CX37, OCLN, JAM1, 
VCAM1 and CADM2 in C18-4 cells. LncRNA5251 is involved in spermatogenesis by modulation of cell junctions.

Conclusion This will provide a theoretical basis for improving male reproductive ability via lncRNA.
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The blood-testis-barrier (BTB) is formed by special con-
nections between Sertoli cells, including tight junctions 
(TJ), cytoplasmic specialization, desmosomes, and gap 
junctions (GP). The connections between cells communi-
cate with each other through secreted factors and signal 
molecules, forming a bidirectional signaling system to 
promote spermatogenesis. The complex formed between 
junction proteins enables BTB to be opened and closed 
in an orderly manner, which promotes the migration of 
developing germ cells from the basement membrane to 
the lumen without damaging the integrity of BTB [8].
Therefore, the cell junction proteins Cx43, Occludin and 
Claudin play an important roles in BTB. It is suggested 
that BTB is one of the tightest tissue barriers in mammals 
[9–11], and it provides a functional microenvironment 
for spermatogenesis.

LncRNA is a type of RNA with a length more than 200 
nt and no coding capacity, which is usually transcribed by 
RNA polymerase II/III [12]. It is rich in species, complex 
in function, low in sequence conservation among differ-
ent species, specific in tissue and developmental stages 
[13]. The lncRNA sequence is poorly conserved, however 
it is an important regulator of gene expression, which can 
play crucial roles in different biological processes [14, 15]. 
LncRNA can regulate the expression of target genes at 
transcriptional, post-transcription and epigenetic levels 
[16]. It has been noted that lncRNA is involved in sper-
matogenesis, which plays an important regulatory role 
in spermatogonial stem cell proliferation [17], germ cell 
meiosis [18] and sperm maturation [19]. A small num-
ber of lncRNAs such as Tsx, Drm, etc. have been verified 
and functionally characterized, but the functions of most 
lncRNAs in spermatogenesis are still poorly understood.

Our previous investigation uncovered that air pol-
lutants (NH3, H2S)-decreased mouse male fertility can 
be heritable, and many lncRNAs were altered in mouse 
sperm. However, we did not know the functions of these 
changed lncRNAs in mouse sperm. The aim of this study 
was designed to explore the functions of the altered 
mouse sperm lncRNAs and the underlying mechanisms, 
which will provide a theoretical basis for improving male 
reproductive ability at molecular level, and provide a sci-
entific guidance for improving male reproductive ability.

Materials and methods
Study design. All animal procedures used in this study 
were approved by the Animal Care and Use Committee 
of the Institute of Animal Sciences of Chinese Academy 
of Agricultural Sciences. Mice were maintained in spe-
cific pathogen-free (SPF) environment under a light: dark 
cycle of 12:12 h, at a temperature of 23 ℃ and humidity 
of 50–70%; they had free access to food (chow diet) and 
water [20–22].

Animal Experiment I: NH3/H2S study [20, 22]. Three-
week-old ICR male mice were dosed with phosphate buff-
ered saline (PBS) as vehicle control (Control group) or 
with Na2S-50 mg/kg body weight (BW) + NH4Cl-50 mg/
kg BW (NH3/H2S group) [23, 24] once daily for 5 weeks. 
There were 60 mice/group. The volume of gavage was 0.1 
ml/mouse/day. Subsequently, 30 mice/treatment were 
humanely terminated for the analysis of sperm quality 
and other parameters. A further 30 mice/treatment were 
mated with normal (untreated) ICR female mice (male: 
female; 1:2). After birth of the F1 litter, the number of live 
pups/litter was counted and all mice were raised similarly 
without further treatment. At the age of 8 weeks (F1), 
30 male mice/treatment were humanely terminated for 
analysis of sperm quality and other parameters. A further 
30 male mice/treatment were mated with normal ICR 
female mice (male: female; 1:2) and subsequently under-
went a similar procedure. After birth of the F2 litter, the 
number of live pups/litter was counted and all mice were 
raised in a similar manner without further treatment 
(Study scheme in Fig. 1a).

Animal Experiment II: Knockdown or overexpression 
of lncRNA5251 in mouse testes [25, 26]. The procedure 
for the production of shRNA and In vivo virus grafting 
have been published in our recent article [25]. (1) Pro-
duction of lentivirus. Lentivirus production was per-
formed as described previously [25, 26]. Knockdown 
Lenti-lncRNA5251 (5251KD) was cloned using the len-
tivirus-3 (LV3; 3NC) vector as a backbone (Fig. S1a), 
while overexpression of lenti-lncRNA5251 (5251OV) was 
cloned using the lntivirus-5 (LV5) vector as a backbone 
(Fig. S1b). There were three knockdown shRNAs at three 
different positions for lncRNA5251, and the sequences 
for each position and NC are listed in Table S1. The full 
length of lncRNA5251 (Table S2) was inserted into LV5 
to make the overexpression lentivirus (5NC was the LV5 
vector). The efficiency and specificity of shRNA knock-
down were determined by transfecting into 293T cells 
using Lipofectamine 2000 (Invitrogen, Waltham, MA, 
USA; #11668-027), followed by analysis at 60  h post-
transfection by qPCR. Lentivirus production was then 
performed as shown in Fig. S1c. Approximately 109 infec-
tious viral particles/ml were obtained. (2) In vivo virus 
grafting and sample collection. In vivo virus grafting 
was performed as previously described [25, 26]. In cur-
rent investigation, four-week-old ICR male mice were 
used. Briefly, four-week-old ICR male mice were anes-
thetized with isofluorane. Microinjections were per-
formed using 26-gauge needles connected to a 100 µL 
syringe. Virus (3 µl with titer greater than 3 × 108/ml) for 
each position for knockdown shRNA [in total 9  µl with 
a titer > 6 × 108/ml for 3NC, or lncRNA5251 (KD) indi-
vidually] were mixed and then injected into the testes. 
For overexpression, virus (9  µl with titer greater than 
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Fig. 1 LncRNA and mRNA expression in three generations mouse testis samples by RNA-seq analysis. (a) Study scheme. Gene changes in sperm 
of three generations of mice treated with NH3/H2S. (b) The number of known up-regulated lncRNAs in the sperm of three generations of mice after 
NH3/H2S treatment. (c) The number of known increased mRNAs in the sperm of three generations of mice after NH3/H2S treatment. (d) GO enrichment of 
target genes that known up-regulated lncRNAs in F0 generation. (e) The expression of lncRNA5251 in the sperm of three generations of mice
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6 × 108/ml) for 5NC, or lncRNA5251 (OV) individu-
ally were mixed and then injected into the testes. Then 
the mice were raised regularly for five weeks till nine 
weeks of age (Fig. 2a; muF0). The mice mated with nor-
mal 8-week-age ICR female mice (male: female, 1:1) for 
four days. The male mice were kept for another four days, 
then terminated for collection samples and analysis. The 
female mice were maintained regularly till the delivery 
of offspring. The offspring was raised regularly till eight 
weeks age. Then the male offspring (muF1) were termi-
nated for collection of samples and analysis (Fig. 2a).

Cell culture experiment: Knockdown or overexpression 
of lncRNA5251 in mouse spermatogonia cell line C18-4 
cells [25]. The C18-4 cell line (mouse spermatogonia 
stem cells; Donated by Dr. Wenxian Zeng, Northwest 
A&F University) was held in DMEM/F12 (Gibco) supple-
mented with 10% (FBS), 2 mM L-glutamine (Invitrogen), 
and 100 U/ml penicillin and streptomycin (Invitrogen) 
[25, 27, 28]. The cells were transfected with shRNA in 
6-well plates. For knockdown, tthree respective shRNAs 
for each position were mixed together (titer > 3 × 108/ml) 
with RNAi-mate for the transfection of C18-4, while for 
overexpression, shRNAs (titer > 3 × 108/ml) with RNAi-
mate for the transfection of C18-4. The transfection 
medium was changed after 12 h. Stable transfected cells 
were cultured in a similar manner to the non-transfected 
cells in their respective media.

Evaluation of spermatozoa motility using a com-
puter-assisted sperm analysis system. Spermatozoa 
motility was assessed using a computer-assisted sperm 
assay (CASA) method according to World Health Orga-
nization guidelines and reported in our early studies [20, 
21, 29–31].

Morphological observations of spermatozoa.The 
extracted murine caudal epididymis were placed in RPMI 
medium, finely chopped, and then Eosin Y (1%) was 
added for staining as described previously [20, 21, 31].

Assessment of acrosome integrity. The procedure of 
analysis of acrosome integrity was reported in our recent 
articles [20, 21, 31].

RNA Isolation and RNA-seq analyses. The RNA-seq 
analysis procedure has been published in our recent arti-
cle [31].

Histopathological analysis. Testicular tissues were 
fixed in 10% neutral buffered formalin, paraffin embed-
ded, cut into 5  μm sections and subsequently stained 
with hematoxylin and eosin (H&E) for histopathological 
analysis [20, 21, 31].

Western blotting. Western blotting analysis of proteins 
was carried out as previously reported [20, 21, 31]. The 
information for primary antibodies (Abs) were listed in 
Table S3.

Detection of protein levels and location in testis 
using immunofluorescence staining. The methodology 

for immunofluorescence staining of testicular samples is 
reported in our recent publications [20, 21, 31]. Table S3 
listed the primary antibodies used in this study.

Immunofluorescence staining with frozen sections for 
C18-4 cells. The protocol for immunofluorescence stain-
ing analysis of C18-4 cells was reported in our recent 
article [32].

Statistical analysis. Data were analyzed using SPSS sta-
tistical software (IBM Co., NY) with one-way analysis of 
variance (ANOVA) followed by LSD multiple comparison 
tests or T-test. The data were shown as the mean ± SEM. 
Statistical significance was based on p < 0.05.

Results
LncRNA5251 was increased in F0, F1 and F2 mouse sperm 
after NH3/H2S treatment transgenerationally
It has been reported in our previous articles that sperm 
quality (concentration and motility) and male fertility 
were decreased by the treatment of NH3 + H2S [20, 22]. 
After treating with NH3 and H2S, the number of known 
up-regulated lncRNAs in the mouse sperm of F0, F1, 
and F2 generations showed a downward trend in Fig. 1b. 
Similarly, mRNA-seq results showed that the number 
of known up-regulated mRNAs in the mouse sperm of 
three generations were 10,242, 1113, and 563 respectively 
which also decreased sequentially (Fig. 1c). Therefore, we 
are very interested in these up-regulated lncRNAs. The 
predicted target genes of up-regulated lnRNAs in F0 gen-
eration mice were determined by GO enrichment analy-
sis to search for the functions. It was interesting to notice 
that biological adhesion, cell proliferation, development 
process, and reproduction process terms were enriched 
in the comparison of treatment group (NH3 + H2S) vs. 
control group (Fig. 1d). Sixty-five known lncRNAs were 
up-regulated in common in the sperm of three genera-
tions of mice. It was interesting to notice that the fold 
changes of lncRNA5251 were great than 2 folds in the 
three generations samples (Fig.  1e). We would like to 
explore the role of it in spermatogenesis and the underly-
ing mechanisms.

Changs in lncRNA5251 expression altered sperm 
concentration and motility in mice in vivo
In order to explore the effect of lncRNA5251 on the 
reproduction of male mice, lncRNA5251 was overex-
pressed (5251OV) and inhibited (5251KD) in the testis 
of F0 mice by shRNA (muF0). The sperm concentration 
in muF0 generation mice was increased by 5251KD 
and decreased by 5251OV, although it was not signifi-
cant (Fig.  2b). However, the sperm motility was signifi-
cantly decreased by 5251OV while it was no change in 
5251KD group (Fig.  2c). The sperm concentration was 
reduced in muF1 5251OV group even though it was not 
significantly (Fig.  2d). However, the sperm motility was 
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Fig. 2 Overexpression of lncRNA5251 decreased mouse semen quality. (a) Study scheme. Sperm quality of mice after shRNA treatment. (b) Sperm 
concentration of F0 mice. (c) Sperm motility of F0 mice. (d) Sperm concentration of F1 mice. (e) Sperm motility of F1 mice. Data present as Average ± SEM. 
a, b indicate a significant difference among different treatments (p < 0.05)
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increased in muF1 5251KD group (Fig. 2e). These results 
indicated that lncRNA5251 was involved in the sper-
matogenesis to regulate sperm concentration or sperm 
motility. And overexpression of lncRNA (5251OV) had 
the negative effects on sperm quality while knockdown 
of lncRNA5251 increased sperm quality. The results 
matched the lncRNA sequencing data that lncRNA5251 
was increased in the sperm while mouse sperm concen-
tration and motility were diminished [20, 22].

Modification of lncRNA5251 expression affected 
spermatogenesis in muF0 mice
Since modification of lncRNA5251 expression affected 
sperm concentration and motility, we set out to explore 
the effects of modification of lncRNA5251 expression 
on spermatogenesis. The important proteins for sper-
matogenesis were determined in mouse testis samples by 
immunofluorescence staining (IHF). The results showed 
that the expression of germ cell marker DDX4 was signif-
icantly reduced in 5251OV group, sperm protein maker 
PGK2 was significantly increased in muF0 5251KD 
group, while the meiosis marker SYCP3 was not change 
significantly (Fig.  3a and b). The data indicated that 
modification the expression of lncRNA5251 impacted 
on the spermatogenesis to affect sperm quality. At the 
same time, the gene expression in the muF0 mouse tes-
tis samples showed that modification the expression of 
lncRNA5251 altered the gene expression. Compared to 
control (NC), there were 57 increased genes while 86 
decreased genes in muF0 5251KD. There were 55 upregu-
lated and 134 gene downregulated in muF0 5251OV com-
pared to NC (Fig. S2). GO enrichment analysis showed 
that the up-regulated genes were enriched in junction 
membrane complex and extracellular region in 5251KD 
group (compared to NC) (Fig. 3c). It was interesting that 
down-regulated genes in the 5251OV group (compared 
to NC) were also enriched in organelle membranes, 
bicellular tight junction and multiple immunoglobulin 
complexes (Fig.  3d). At the same time, the protein lev-
els of the cell junction proteins CADM2 and CX43 were 
decreased in the 5251OV group (compared to NC; Fig. 3e 
and f ). Moreover, the protein levels of steroid hormone 
production protein CYP11A1 and apoptosis protein Bcl-
xl were increased in 5251KD group (compared to NC) 
(Fig.  3e and f ). It has been reported that the cell junc-
tion complexes are the key regulators for the interaction 
between cell junctions, which can regulate the “opening 
and closing” of BTB and play a vital role in spermatogen-
esis [33]. The data suggested that lncRNA5251 is involved 
in the spermatogenesis by modulating the formation of 
cell junctions, and the steroid hormone production.

Alteration of lncRNA5251 expression even impacted on 
spermatogenesis in muF1 mice
Modification of the expression of lncRNA5251 altered 
the spermatogenesis in muF1 mouse testis. The IHF data 
showed that the expression levels of germ cell marker 
DDX4, meiosis marker SYCP3, and transit protein TP1 
were significantly reduced in 5251OV group F1 mouse 
testis samples (compared to NC; Fig.  4a and b). At the 
same time, the gene expression data showed that, com-
pared to control (NC), there were 104 increased genes 
while 222 decreased genes in 5251KD. There were 152 
upregulated and 214 gene downregulated in 5251OV 
compared to NC (Fig. S3). GO enrichment analysis 
showed that the up-regulated genes were enriched in 
biological processes related to spermatogenesis, such as 
gamete generation, positive regulation of cell-cell adhe-
sion, and positive regulation of epithelial cell prolifera-
tion in 5251KD group (compared to NC) (Fig. 4c). It was 
interesting that down-regulated genes in the 5251OV 
group (compared to NC) were enriched in the cell sur-
face, anchored component of membrane, and spermato-
proteasome complex (Fig.  4d). At the same time, the 
protein levels of the cell junction proteins CADM2 were 
increased in the 5251KD group (compared to NC; Fig. 4e 
and f ). Moreover, the protein levels of important pro-
teins for spermatogenesis or sperm quality GDNF and 
ODF1 were increased in 5251KD group (compared to 
NC) (Fig. 4e and f ). The data suggested that lncRNA5251 
is not only involved in the spermatogenesis muF0 
mouse, but also in muF1 mouse which indicated that 
lncRNA5251 is very important in spermatogenesis.

Inhibition of lncRNA5251 increased cell junction proteins 
in C18-4 cells
Mature sperm is derived from spermatogonial stem cell 
through a series of divisions and differentiations. C18-4 
cell line is a commonly used spermatogonial stem cell 
model in vitro. Since lncRNA5251 was found in three 
generational mouse sperm, C18-4 cells were applied to 
explore the deep mechanisms of lncRNA5251 impact 
on spermatogenesis and sperm quality. The expres-
sion of lncRNA5251 in C18-4 cells was inhibited (C18-
5251KD) and overexpressed (C18-5251OV) by shRNA. 
The gene expression after modification of the expres-
sion of lncRNA5251 was determined by RNA-seq 
analysis. The heatmap showed that 321 genes were 
up-regulated while 288 genes were down-regulated in 
the C18-5251KD group (compared to NC), however, 
17 genes were up-regulated and 25 genes were down-
regulated in the C18-5251OV group (compared to NC; 
Fig. 5a). GO enrichment analysis showed that the genes 
up-regulated in the KD group were enriched in cell junc-
tion, integrin complex, myosin II complex, T-tubules 
and others related to cell adhesion and junction (Fig. 5b). 
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Fig. 3 Overexpression of lncRNA5251 disrupted spermatogenesis in F0 mice. (a) The protein staining of DDX4, PGK2 and SYCP3 in F0 mice testis 
after shRNA treatment detected by IHF. (b) The quantitative data for IHF in (a). (c) Gene ontology (GO) enrichment of up-regulated genes after knockdown 
of lncRNA5251. (d) GO enrichment of decreased genes after overexpression of lncRNA5251. (e) The protein levels of CADM2, CX43, CYP11A1 and BCL-XL 
detected by WB in F0 mouse testes. (f) The quantitative data for WB in (e). Data present as Average ± SEM. a, b indicate a significant difference among 
different treatments (p < 0.05)
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Fig. 4 Spermatogenesis was upset in F1 mice after overexpression lncRNA5251. (a) The protein staining of DDX4, SYCP3, TP1 and PGK2 in F1 mice 
testis after shRNA treatment by IHF. (b) The quantitative data for IHF in (a). (c) GO enrichment analysis of up-regulated genes after inhibiting lncRNA5251. 
(d) GO enrichment analysis of down-regulated genes after overexpressing lncRNA5251. (e) The protein levels of CADM2, GDNF and ODF1 detected by 
WB in F1 mouse testes. (f) The quantitative data for WB in (e). Data present as Average ± SEM. a, b indicate a significant difference among different treat-
ments (p < 0.05)
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Subsequently, KEGG analysis showed that the changed 
genes were enriched in PI3K-AKT and MAPK signal-
ing pathways in C18-5251KD group (compared to NC; 
Fig.  5c), while the changed genes of in C18-5251OV 
group were enriched in the pathways ECM recep-
tor interaction, focal adhesion, and PI3K-AKT path-
way (Fig.  5d). These data indicated that lncRNA5251 
is involved in the cell adhesion and junction formation 
in mouse testis. Then the protein levels of cell junction 
and adhesion proteins were verified by IHF analysis 

which included CX37, CX43, ZO-1, Occludin (OCLN), 
JAM1, VCAM1, Desmoglein 2 (DSG2), Catenin, Clau-
din 11, E-cadherin and CADM2. The data showed that 
the expression levels of five cellular adhesion/junction 
proteins CX37, Occludin (OCLN), JAM1, VCAM1 and 
CADM2 in C18-4 cells were significantly increased in 
5251KD group compared to NC (Fig.  6a and b), while 
other the data for other proteins were not significant 
(Data not shown). The data from C18-4 cells further 

Fig. 5 Gene expression in C18-4 cells after modification of lncRNA5251 expression. (a) Gene expression heatmap of C18-4 cells after modification 
of lncRNA5251 expression. (b) GO enrichment analysis of the increased genes in C18-4 cells after inhibiting lncRNA5251 expression. (c) KEGG enrichment 
of the genes after inhibition of lncRNA5251 in C18-4 cells. (d) KEGG enrichment analysis of the genes in C18-4 cells after overexpression of lncRNA5251.
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suggested that lncRNA5251 is involved in cell-cell junc-
tions to modulate spermatogenesis.

Discussion
LncRNA lacks an open reading frame and was regarded 
as a by-product in the transcription process in the early 
time, so it has not received much attention. With the 
advancement of sequencing technology, lncRNA has 
truly entered people’s field of vision. This non-protein 
coding RNA, once regarded as “junk”, plays important 
roles in many biological processes such as embryonic 
development, cell differentiation and tumor metasta-
sis [14, 15, 34]. Studies have shown that lncRNA is also 
involved in spermatogenesis [35]. Many lncRNAs have 
different expression levels and tissue specificities at dif-
ferent stages of mammalian spermatogenesis, and they 
are involved in the regulation of gene silencing, cell 
division, gonadal development, and sex determination 
[36]. For example, Mrhl mediates the meiosis process in 
mouse testis by regulating the expression of Sox8 [37]. 

LncRNA033862 can regulate the self-renewal of sper-
matogonia stem cell (SSC) by acting as a transcriptional 
activator of Gfra1 [38]. Recently, the decline of male fer-
tility caused by environmental pollutions has attracted 
more and more attention. As previously reported, the 
reduction in sperm quality after NH3 and H2S treatment 
was transgenerational [20, 22]. In current investigation, 
we found many lncRNAs were altered after NH3 + H2S 
treatment in three generational mouse sperm (F0, F1, 
F2). And lncRNA5251 was interesting because it was 
increased in the three generational mouse sperm. And 
we explored the effects and underlying mechanisms of 
lncRNA5251 on sperm quality (concentration and motil-
ity) and spermatogenesis by knocking down or overex-
pressing the expression of lncRNA5251 through shRNA. 
Interestingly, the results from in vivo experiments 
showed that the sperm quality (concentration and motil-
ity) of F0 and F1 mice was decreased after overexpres-
sion of lncRNA5251 which suggested that it is involved in 
spermatogenesis.

Fig. 6 Expression of cell junction related protein after modification lncRNA5251. (a) The protein staining of CX37, OCLN, JAM1, CADM2 and VCAM1 
in C18-4 cells after inhibition and overexpression of lncRNA5251detected by IHF. (b) The quantitative data for IHF in (a). Data present as Average ± SEM. a, 
b indicate a significant difference among different treatments (p < 0.05)
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Spermatogenesis is a complex process including mitotic 
cell division, meiosis and the process of spermiogenesis 
[39]. RNA-seq of testis samples showed that the differ-
entially expressed genes in 5251KD group (compared 
to NC) or in 5251OV group (compared to NC) were 
enriched in the immune, spermatogenesis process, espe-
cially in the pathways of cell junctions, regardless of the 
muF0 or muF1 generation. And germ cell marker, meio-
sis and sperm proteins, such as DDX4, SYCP3, PGK2 and 
TP1 were altered in 52521KD or 5251OV group which 
further suggested lncRNA5251 regulates spermato-
genesis. Moreover, the expression of the cell connexins 
CADM2 and CX43 was diminished in 5251OV group by 
WB analysis which further confirmed the RNA-seq data.

In the process of spermatogenesis, germ cells migrate 
from the base to the lumen through BTB, completing 
the process of sperm formation under various adjust-
ments [40]. And BTB works through cell junctions which 
are composed of a variety of proteins. For example, the 
tight junction (TJ) proteins Occludin and Claudin, gap 
junction proteins CX43 and CX37 [41] as well as adhe-
sion junction (AJ) protein JAMs [42] are important for 
the barrier integrity of epithelial tissues [43]. TJ and AJ 
can be connected by adaptors (such as ZO-1), which are 
structurally involved in enhancing BTB [11]. Totally, cell 
junction proteins work together to maintain the homeo-
stasis of the testicular environment to promote sper-
matogenesis. In C18-4 cells, the expression levels of cell 
connexin CX37, OCLN, JAM1, VCAM1 and CADM2, 
were significantly increased in 5251KD group. In vitro 
experiments further confirmed that lncRNA5251 is 
involved in spermatogenesis through cell junctions.

Conclusion
In summary, the in vivo and in vitro results together 
prove that lncRNA5251 regulates spermatogenesis via 
cell-cell junctions. This work provides a theoretical basis 
for improving male reproductive ability through lncRNA 
to help the infertile patients to be parenthood.
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