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Abstract

The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of
cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols.
Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages
(1–4 & 4S), where stages 3–4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for
geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes. Despite
highly intensive basic research, improvements on clinical outcome have been predominantly observed for less
aggressive cancers, that is stages 1,2 and 4S. Therefore, stages 3–4 NB are still complicated at the therapeutic level
and require more intense fundamental research. Using neuroblastoma as a model system, here we herein outline
how cancer prediction studies can help at steering preclinical and clinical research toward the identification and
exploitation of specific genetic landscape. This might result in maximising the therapeutic success and minimizing
harmful effects in cancer patients.
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Background
Since the revelation of the whole human genome, there
has been tremendous advances in sequencing technolo-
gies, with reductions of costs and time, allowing for an in-
credible step forward in the global cancer genomic
fruition [1–3]. We moved from The Cancer Genome Atlas
(TCGA) to the Pan-Cancer Analysis of Whole Genomes
(PCAWG) Consortium [4–6], which includes most tumor
types, matching DNA sequencing and RNA transcripts.
Recently, 2658 cancers have been deeply analysed [7, 8]
reconstructing the origin and evolution of mutational pro-
cesses and driver mutation sequences of 38 types of

cancer, including neuroblastoma. A significant number of
driver gene mutations (4–5) was observed, and a fourfold
diversification of these drivers and increased genomic in-
stability have been reported at later stages.
Since the clinical application of massive sequencing,

and moreover the clinical application of omics, each pa-
tient can provide an enormous amount of molecular
data which can be also implemented in the drug discov-
ery process, moving fast towards the selection of the
right drug for the right patient. This attitude towards
the introduction of precision medicine into clinical ther-
apy, was furthermore boosted by President Obama’s
speech introducing the Precision Medicine Initiative in
2015, aimed at creating a collaborative academical envir-
onment [9, 10] to improve the use of the omics in both
patients’ treatments and drug development.
Alongside with the advances in sequencing technolo-

gies, drug discovery rapidly reshaped itself. Drugs were
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initially discovered in a serendipitous fashion as in the
case of penicillin [11], or aspirin [12]. Pharmaceutical ef-
forts were aimed at finding molecules suitable for a
given unmet medical need, as in the case of infections or
inflammatory diseases. A single agent was tested in a
single disease at a time. Chemical libraries speeded up
the process, allowing the testing of multiple molecules in
a relatively cheap and fast approach, and leading to the
discovery of many classes of drugs which now have a
predominant role in the clinics, such as statins [13]. At
this point, the scientific focus was still on the molecule
itself and the pathology for which it was developed.
Patients’ clinical characteristics were still not fully evalu-
ated during the drug development process, due to the yet
inadequate availability of patient-derived molecular data.
Nevertheless, further advances in the technologies used in
this disease-oriented drug discovery approach, such as
fragment screening of chemical compounds [14, 15] and
lately cryo-electron microscopy [16] or structural bioinfor-
matics [17], led to the development of a large number of
therapies. This abundance of molecules, however, does
not reflect the higher complexity of many diseases, among
which cancer represents a prominent example: in many
clinical contexts there is an abundance of therapies which
can be chosen, but in many cases patients would not re-
spond primarily [18]. Understanding the molecular profile
of each of those primary refractory patients might repre-
sent a possible way to overcome our inability to tailor the
right treatment for the right patient. This is in desperate
need for primary refractory patients, as well as for patients
who would benefit from many of the existing treatments
but without knowing which one would get to the max-
imum clinical efficacy. Figure 1 reports a brief outline of
the evolution of therapeutic drug development.
Massive sequencing approaches applied to disease en-

tities such as cancer, have changed our point of view on
diseases themselves, initially considered as entities per se,
to disease as a single individual related clinical condition;
this paradigm shift allowed to move to a completely
patient-oriented effort to select the right drug, at the right
moment. Effectively, under this light, many clinical trials
have undergone a revolution: clinical efficacy is not any-
more the only primary objective since also the study of
biomarkers, to define subpopulations of treated or to be
treated patients who would benefit more from a given
treatment, is now performed [19, 20]. The vast availability
of molecular data from patients, derived from multiple
omics approaches, together with the implementation of
computing algorithms and artificial intelligence, also
opened a new era in drug discovery and clinical practice
[21–23]: the selection of the right molecular target can be
done on a single patient basis, and its efficacy and potential
toxicity can also be predicted using a metabolomic
approach in combination with genetic information [24].

Precision medicine has therefore entered the clinic in
a single patient perspective [25–27]. This is an extremely
actual approach, especially in disease entities which have
been extensively characterized from a molecular point of
view in the era of global sequencing approaches such as
Neuroblastoma.

The case of neuroblastoma
Neuroblastoma (NB) is clinically linked to distinct gen-
omic abnormalities that seems to involve possible causa-
tive and progression genes of the disease [28–30]. These
genomic abnormalities include deletions on chromosomes
1p, 11q or gains on 17q2,3; all being effective prognostic
markers of the clinical outcome even though their mo-
lecular mechanisms are still not fully elucidated. Another
crucial NB genetic signature is the amplification of the
proto-oncogene MYCN; its amplification, with its over-
expression, is a stronger predictor of tumor aggressive-
ness, chemotherapy refractoriness and clinical outcome.
For example, NB patients with MYCN amplification
report less than 50% 5 years survival, whilst the non-
MYCN-amplified might report over 90%.
Nevertheless, MYCN is not the only culprit of NB ag-

gressiveness. Recently, familial or sporadic NB patients
have been reported to carry activating mutations of ALK.
In the former cases, up to 50% of the cases show germline
mutations in ALK gene, while sporadic NB may acquire
ALK somatic mutations and ~ 2% display genomic ampli-
fication. ALK, member of the receptor tyrosine kinases
superfamily and in particular, the insulin receptor (IR),
shows homology with the leukocyte tyrosine kinase, the
insulin-like growth factor-1 receptor kinase and the IR
kinase. The single-chain transmembrane ALK is localized
on human chromosome 2p23. At the molecular level, its
mutation/amplification fosters cell proliferation and sur-
vival via the JAK–STAT, PI3K–AKT or RAS–MAPK
pathways. Indeed, mutated (constitutively activated) ALK
physically binds hyperphosphorylated ShcC, inhibiting, in
response to growth factors, the MAPK signalling. More-
over, NB shows the deletion or loss-of-function mutation
of the RNA-helicase ATRX. Interestingly, deregulation of
ATRX and MYCN are mutually exclusive.
A further unexpected genetic rearrangement in high-risk

NB is the activation of telomerase reverse transcriptase
(TERT). This occurs in the chromosomal region 5p15.33
proximal of TERT. Again, TERT rearrangements, ATRX
mutations and MYCN amplifications are mutually exclusive
even though they take place exclusively within the high-risk
NB patients. This leads to the concept that these genetic
abnormalities converge on a similar function. Still, in
MYCN-amplified tumors without TERT rearrangements, its
expression is nevertheless increased: juxtapose TERT rear-
rangements to strong enhancers result in deep epigenetic re-
modelling of the regulatory region without changes in the
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gene copy number. Whole-genomic sequencing shows that
ATRX mutations occur only in MYCN-non-amplified and
TERT-normal NB and are associated with increase in alter-
native lengthening of telomeres (ALT). This indicates that
telomere lengthening is a common trait of high-risk NB
(MYCN-amplified, ATRX-mutated, TERT-rearranged can-
cers) independently from the underlying molecular mechan-
ism of telomere maintenance. Therefore, high-risk NB show
telomerase activation that is subsequent to either TERT re-
arrangement or MYCN amplification (which in any case is
able to activates TERT).
The Chr17q region containing the TRIM37 gene is

frequently amplified in neuroblastoma, as well as breast
cancer. Since the acentrosomal spindle assembly follow-
ing PLK4 inhibition, during mitotic division, depends on

levels of the centrosomal ubiquitin ligase TRIM37 [31].
The steady state level of TRIM37 regulates the spindle
assembly and subsequently the proliferation, in particu-
lar following PLK4 inhibition. Therefore, TRIM37 is a
prognostic factor for human NB with 17p-deletion and,
at the same time, an essential determinant of mitotic
vulnerability to PLK4 inhibition [31]. This is highly rele-
vant, as recently excellent PLK4 inhibitors have been
identified [32, 33]. A PLK4 inhibitor, CFI-400945, trig-
gers mitotic catastrophe in breast cancer cells overex-
pressing TRIM37 [34].
The locus deleted in 1p in NB contains an interesting

gene, Trp73, codifying for the p73 protein [35, 36]. p53,
p63 and p73 define the p53 family of transcription fac-
tors. All three are transcribed as several distinct protein

Fig. 1 Evolution of Drug Development. We may distinguish 5 distinct phases in the evolution of drug discovery. In the first half of the last
century, that was mainly occurring by serendipity (phase 1); nonetheless important drugs were identified, including Aspirin by Hoffman and
penicillin by Fleming. In the second part of the last century (phase 2), the development of massive chemical libraries that could be tested in vivo
in mice, subsequently translated into selective human groups, has allowed the definition of thousands new drugs that have revolutionized
medicine, especially cancer therapy. In this century, we are equipped with the sequence of the entire human genome and large numbers of
genetic banks, with specific mutations, deletions, polymorphisms and histone modifications (phase 3). This permitted the identification of
intelligent drugs, acting only on one single target and therefore wanton toxicity (phase 4), in other wards, selecting the specific drug for the
individual patient. With metabolic mutation, identification of predisposing mutations, selection of monitoring or predictive cluster of genes,
proteins or phospho-protein, oncology will enter the 4P medicine: Preventive, Personalized, Predictive, Participative
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isoforms [37–40]. Two alternative promoters drive the
expression of either a transcriptionally active p73 (TA
isoforms) proteins [41], containing a full N-terminal
transactivation domain (TAD), or a N-terminally trun-
cated (ΔN isoforms) proteins [42], that lack the TAD.
ΔN isoforms might have fully independent functions or
may act as dominant negative molecules by inhibiting
the transactivating activity of the TA isoforms. For ex-
ample, while TAp73 is an inducer of cell cycle arrest,
neuronal function [43–45] and apoptotic cell death, and
largely mimics the tumor suppressive activities of p53
[46–53], ΔNp73 isoforms promote cancer cell survival
and exhibit oncogenic properties. The phenotypical
characterization of selectively knockout mice for either
TAp73 and ΔNp73 fully support their function as tumor
suppressor or pro-oncogenic factors, respectively. More-
over, p73 is essential for the development and differenti-
ation of the neuronal tissue. Accordingly, TAp73−/−

knockout mice as well as p73D13/D13 knockout mice
show hippocampal dysgenesis with reduction of the
neurogenesis in the subgranular zone of the dentate
gyrus [54]. Conversely, ΔNp73−/− knockout mice exhibit
signs of neurodegeneration, as a consequence of the pro-
survival function of this isoforms. Hence, TAp73 and
ΔNp73 are crucial regulators of tumorigenesis and neu-
rodevelopment [55, 56].
Recently, we discovered that expression of ZNF281, a

zinc finger factor associated with several cellular func-
tions, is deregulated in terminal differentiation of murine
cortical neurons and in differentiating NB cells. Indeed,

the mouse zinc finger transcription factor Zfp281 (or the
human homologue ZNF281), involved in the control of
neuronal progenitor stemness by inhibiting Nanog ex-
pression in mice through recruitment of the inhibitory
complex NuRD on the Nanog promoter, is significantly
expressed in neuronal cells, and significantly repressed
during neuronal differentiation, including neuroblastoma
[57]. ZNF281 is highly expressed in stage 4 NB patients
supporting a role of ZNF281 in the progression of the
disease. Accordingly, NB patients with “low-expressors”,
thus indicating that ZNF281 represents a prognostic
marker of human NB [57].
Another member of the same family is also

expressed in NB tumours: ZNF143 [58]. In this case,
LIN28B, or LIN28B mutant that is unable to inhibit
let-7 processing, increases the penetrance of MYCN-
induced neuroblastoma, potentiates the invasion and
migration of transformed sympathetic neuroblasts,
and drives distant metastases in vivo. In particular,
LIN28B physically binds ZNF143 and activates the ex-
pression of downstream targets, that is GSK3B and
L1CAM, affecting adhesion and migration of the can-
cer cells [58]. Figure 2 shows how the distinct NB
subgroups with distinct genetic aberrations define in-
dividual prognostic groups.
It is therefore essential, following a diagnosis of NB, to

understand which molecular defect is present in each in-
dividual patient, in order characterize the patient’s risk
group and select the more appropriate therapy, accord-
ingly. In each of these groups, the identification of the

Fig. 2 Risk groups for neuroblastoma patients. Depending on ploidy, TERT expression, telomerase elongation, ZNF281/ZNF143 expression, Chr17p
or Chr1p deletions, neuroblastoma patients can be stratified into distinct sub-groups with distinct prognostic outcome. Therefore, the molecular
identification of these markers is pivotal to define the most appropriate therapy for individual patient. For example, patients with Chr17p defect
and impaired TRIM37 may be specifically selected for using PLK4 inhibitors, that would be otherwise ineffective in other patients
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underlying molecular events at the bases of tumour pro-
gression [59–61] might allow for specific combination
therapies to optimise therapeutic efficacy and minimise
toxic side effects [62].

Is there a role for exogenous factors such as
microbiome?
The microbiome [63–66], often interacting with envir-
onmental urban life [67–70], constitutes a large mass of
metabolizing bacteria, which are able to metabolise and
transform normal constituents [71–73] and to impinge
on the function of the host [74–77]. Just as examples,
microbiota directly affects the B cell repertoire [78], the
histone HDAC3 activity [79] or even the function of mu-
tant p53 [80, 81]. Importantly, microbiota can also affect
immunity to tumors and the efficacy of chemotherapies,
but can also affect massively inflammatory cronic dis-
eases [82, 83].
This, just to remain with the neuroblastoma example,

are also of relevance in other cancer progression or even
in neurophysiology. Accordingly, gut microbiota shows
neuroprotective properties, reducing IL-6 secretion in
different neural cell lines, including neuroblastoma [84,
85]. Here, these investigators identified two specific
strains, Parabacteroides distasonis MRx0005 and Mega-
sphaera massiliensis MRx0029, producing distinct C1-
C3 or C4-C6 fatty acids [84] or, in another context,
galacto-oligosaccharides [86] or short-chain fatty acid re-
ceptor 3 [87]. Similarly, Roseovarius albus increases
brain derived neurotropic factor (BDNF) expression
while reducing Bax/Bcl-2 ratio in neuroblastoma cell
lines [88]. Neuroblastoma has per se the ability to im-
pinge on the gut microbiota [89]. Consequently, it is
conceivable to provide supplementary dietary treatment
in neuroblastoma patients to improve the therapeutic re-
sponse [90–93].

Conclusion
The advance in technology, including massive sequencing,
bioinformatic analysis by artificial intelligence, cloud com-
puting, fast large scale proteomic and phospho-proteomic
analysis is rapidly providing a unique opportunity to the
global cancer genomic community to improve the previ-
ous analysis of TCGA with an individual systematic docu-
mentation of selective mutations which drive common
tumour types. This provides, as being done now, the use
of intelligent drugs with a single target for an individual
patient, therefore reducing undesirable toxicity, while in-
creasing the efficacy. In the near future, such possibilities
will be expanded along with the use of the 4P medicine:
Preventive, Personalized, Predictive, Participative.
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