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Abstract

Background: Kidney renal clear cell carcinoma (KIRC) is a type of cancer that is resistant to chemotherapy and
radiotherapy and has limited treatment possibilities. Large-scale molecular profiling of KIRC tumors offers a great potential
to uncover the genetic and epigenetic changes underlying this disease and to improve the clinical management of KIRC
patients. However, in practice the clinicians and researchers typically focus on single-platform molecular data or on a
small set of genes. Using molecular and clinical data of over 500 patients, we have systematically studied which type of
molecular data is the most informative in predicting the clinical outcome of KIRC patients, as a standalone platform and
integrated with clinical data.

Results: We applied different computational approaches to preselect on survival-predictive genomic markers and
evaluated the usability of mRNA/miRNA/protein expression data, copy number variation (CNV) data and DNA methylation
data in predicting survival of KIRC patients. Our analyses show that expression and methylation data have statistically
significant predictive powers compared to a random guess, but do not perform better than predictions on clinical data
alone. However, the integration of molecular data with clinical variables resulted in improved predictions. We present a
set of survival associated genomic loci that could potentially be employed as clinically useful biomarkers.

Conclusions: Our study evaluates the survival prediction of different large-scale molecular data of KIRC patients and
describes the prognostic relevance of such data over clinical-variable-only models. It also demonstrates the survival
prognostic importance of methylation alterations in KIRC tumors and points to the potential of epigenetic modulators
in KIRC treatment.

Reviewers: An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015
by the CAMDA Programme Committee. The full research paper then underwent one round of Open Peer Review
under a responsible CAMDA Programme Committee member, Djork-Arné Clevert, PhD (Bayer AG, Germany). Open
Peer Review was provided by Martin Otava, PhD (Janssen Pharmaceutica, Belgium) and Hendrik Luuk, PhD (The Centre
for Disease Models and Biomedical Imaging, University of Tartu, Estonia). The Reviewer comments section shows the
full reviews and author responses.

Background
Multi-omics datasets are now available for many cancers
and provide a plethora of molecular details about the
tumor tissues. The generation of these datasets has been
driven by technological advancements that made genetic,
epigenetic, transcriptomic and proteomic profiling pos-
sible. These data are informative for multiple aspects
ranging from discovering of new markers for more ac-
curate cancer diagnosis and prognosis, to development
of new therapeutics and personalized treatments. With

focus on kidney renal clear cell carcinoma (KIRC), as a
response to one of the CAMDA 2015 challenges, we
performed a systematic analysis of genome-wide mo-
lecular datasets to investigate underlying mechanisms of
cancer progression.
Renal cell carcinoma is the most common neoplasm of

the kidney and it accounts for approximately 95,000
deaths per year worldwide [1]. Early stage renal cell car-
cinoma is usually treated surgically and has an overall
survival of 60–70%. However, late stage renal cell carcin-
oma has a poor prognosis with 5-year survival of less
than 10% and it has limited therapeutic options. More
than 30% of patients develop metastatic progression
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after therapeutic treatment. Among others, failure of
currently known treatments can be attributed to cancer
heterogeneity and an incomplete knowledge about the
molecular determinants of cancer progression, which
could be remedied by an appropriate omics screening of
patients in the clinics.
In the last few years, extensive efforts have been made

to incorporate diverse molecular information for better
prognosis and treatment plans [2–4]. However, due to
the rather high effort of large-scale molecular profiling,
in practice clinicians are mainly focusing on a small
number of selected genes or are using only single-
platform genomic data. In this situation, we aimed to de-
termine to what extent different molecular profiling data
could be useful in clinical practice for cancer prognosis.
In this manuscript we present three computational

strategies to preselect survival prognostic markers based
on quantitative omics measurements and patient sur-
vival. Using these strategies we analyzed full multi-omics
TCGA data [5] from more than 500 patients and identi-
fied genomic loci that are frequently altered in KIRC pa-
tients and are linked to patients survival. Then, for each
molecular data type alone and in combination with each
other and with clinical variables we evaluated the ability
to predict patient survival.

Methods
Data
Clinical information of 533 patients (357 alive and 176
deceased) was obtained from the TCGA online database
(http://tcga-data.nci.nih.gov, on October 22, 2015). Pa-
tient distribution by the TNM staging system was as fol-
lows: tumor stage I: 267, stage II: 57, stage III: 126 and
stage IV: 86 patients.
Preprocessed molecular data were downloaded from

the ICGC Data Portal (https://dcc.icgc.org), such that
mRNA/miRNA/protein expression and somatic copy
number variations (CNV) data were obtained from re-
lease 19, while DNA methylation data from release 18.
Somatic mutation data were downloaded from the
TCGA online database on October 22, 2015. For mRNA
expression quantification we only used data coming
from Illumina mRNA-seq experiments.
The samples that we analyzed come from two tissue

types: primary tumor solid tissue and normal tissue adja-
cent to primary tumor.

Data preprocessing
In CNV data analyses, protein-coding genes were
mapped to genomic segments using the R package
“GRanges” [6]. In the survival prediction analyses, we
have considered only genes/probes whose expression,
methylation or CNV levels were quantified in more than

half of the patients. All statistical analyses were con-
ducted in R version 3.2.0 [7].

Identification of prognostic markers associated with
overall patient survival
The patients were assigned into three equally sized sets:
n1 = 178, n2 = 178 and n3 = 177. To make sure that no
clear differences were observed in the three data sets in
terms of survival time and vital status, we first sorted
the patients based on their survival/follow-up time and
then we distributed each of the consecutive patients to
one of the sets. All computations were repeated in three
rounds, such that at each round two sets were used as a
training cohort, while the remaining set was used as a
test cohort. This cross-validation technique assures that
all patients were seen once in the test cohort and mini-
mizes the possible bias in the results arising from patient
stratification. Below we present the computational steps
performed at each round.
On each omics data (mRNA/miRNA/protein expres-

sion, CNV and DNA methylation) we applied four
different approaches to identify survival associated
genomic loci:

“Extreme score stratification approach”: The training
cohort, which was composed from 2/3 of the patients,
was randomly divided into two sets. For each omics
data and for each gene/probe, we identified patients
that have “extremely” high or “extremely” low
quantitative molecular levels (expression/methylation/
structural variation, respectively) in the first set. Next,
we compared the overall survival of the patients that
have “extremely” high molecular levels to the survival
of the patients that have “extremely” low molecular
levels using log-rank statistical test. If the survival was
significantly different (p-value < 0.05), we tested if the
same holds in the second set of patients. If the gene/
probe was validated as predictive in the second set as
well (p-value of log-rank test < 0.05), it was selected as
a predictive marker. This procedure of randomly
splitting the training cohort into two sets was repeated
100 times, and for each genomic loci the frequency of
being selected as a predictive marker was counted.
Quantitative molecular values were transformed to
Z-scores by subtracting the average, then dividing by
standard deviation of the respective molecular values in
the tumor samples. The stratification of the patients
into groups that have “extremely” high or “extremely”
low quantitative molecular levels was done based on
the Z-scores: Z-scores > 1 were noted as extremely
high, Z-scores < −1 were noted as extremely low. We
required that each stratified patient group contains at
least 10 patients, to ensure that the selected predictive
markers are informative for substantial set of patients
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and avoid selecting predictors that appear as relevant
for individual patients only.
“Mean score stratification approach”: Here for each
omics data and for each gene/probe, we compared the
survival of the patients that have higher than average
quantitative molecular levels to the survival of patients
that have lower than average quantitative levels.
In this respect, we applied the same procedure as in the
“extreme score stratification” approach, but we used
a threshold of Z-score = 0 to stratify the patients
(Z-score < 0 corresponds to lower than average;
Z-score > 0 corresponds to higher than average).
“Extreme survival stratification approach”: The training
cohort was randomly divided into two sets. In the first
set, we identified two groups of patients: the ones that
died within the first year of diagnosis and the ones that
lived longer than 5 years. Then for each omics data and
for each gene/probe, we tested if there are significant
differences in the quantitative molecular levels between
the two groups of patients using t-test (p-value for
significance < 0.05). If significant differences in the
molecular levels were observed, the same procedure
was applied on the second set. If significant differences
were observed in the second set as well, the respective
gene/probe was selected as a potential marker. For each
set, we required to have at least 10 patients in the
“short surviving” group, and at least 10 patients in the
“long surviving” group. The procedure of randomly
splitting the training cohort into two sets was repeated
100 times, and for each gene/loci the frequency of
being selected as a predictive marker was counted,
similarly as above.
For each of the approaches we selected the top 10 most
frequently selected genes/probes as survival predictive
markers.
“Combined approach”: in this approach we simply used
the union of all the potential markers selected based on
the above three approaches as survival predictive
markers.

Selection of predictive models
For each omics platform we used all possible combinations
of predictive markers identified with each of the above-
described approaches to build Cox regression models [8]
on the training cohort. In the first three approaches, we
built models with different ranks containing 1 to 10 se-
lected predictive markers. For each rank (1 to 10) under
each approach we selected the model that performs the
best on the training cohort. Then we tested the selected
models on the test cohort and reported their performance.
In the “combined approach”, since the set of survival pre-
dictive markers consists of all markers selected under the
other approaches, the number of possible predictive
markers can range up to 30. In such case, examining all

possible combinations of 10 selected markers is computa-
tionally very expensive; therefore in this approach we built
models with ranks up to six (see Fig. 3).
The model performance on the train and test cohorts

was measured via the concordance index (C-index) [9, 10].
The C-index is a nonparametric measure that quantifies
the discriminatory power of predictive models. It is defined
as the fraction of pairs of patients where the predicted sur-
vival times are correctly ordered among all pairs that can
actually be ordered. A C-index of one indicates perfect
prediction accuracy, while a C-index of 0.5 corresponds to
a random guess.
In the integrative data analyses we used the union of

all predictive markers from the different omics data to
built multi-omics predictive models. The inclusion of
a predictive marker into the model was assessed
through a backward model selection procedure based
on Akaike information criterion (AIC) [11] combined
with a Cox regression. The computations were per-
formed with the function stepAIC from the R package
“MASS” [12], starting from an initial model that in-
cludes all predictive markers. The model that gives
minimal AIC on the train data was evaluated on the
test data. All computations were repeated in three
cross-validation rounds.

Results
Identification of molecular signatures associated with
overall patient survival in kidney renal clear cell
carcinoma
To identify molecular signatures linked to patient sur-
vival in Kidney Renal Clear Cell Carcinoma (KIRC) we
used clinical and multi-omics data from 533 patients.
The patients were assigned into three equally sized
sets. Two sets comprised the training cohort that was
used to define prognostic signatures from each mo-
lecular platform and to define prognostic models,
while the third set was used for testing the prognostic
performance.
To assess which omics data has the best survival pre-

diction power we applied four different approaches for
selecting prognostic molecular signatures. First, we
asked whether “extremely” low or high levels of a given
quantitative molecular marker (miRNA/mRNA/protein
expression, CNV or DNA methylation) had a significant
correlation with patient overall survival (see Fig. 1a).
Based on this “extreme score stratification approach” we
selected the top loci from each omics data whose ex-
treme measured values were statistically linked to pa-
tient overall survival. A variation of this approach has
shown very good performance for detecting survival-
associated miRNA signatures in KIRC [13].
In another approach, which we call “mean score strati-

fication approach”, for each omics entity we compared
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the overall survival of the patient group characterized by
measured levels lower than the average to the survival of
the patient group with measured levels higher than the
average (see Fig. 1b).
In our next approach, we only considered patients that

died within the first year of diagnosis and patients that
survived more than 5 years, and for each omics entity
(miRNA/mRNA/protein expression, CNV or DNA
methylation) we sought to determine if there are signifi-
cant differences in the measured levels between the two
groups of patients. This approach we call “extreme sur-
vival stratification approach” (see Fig. 1c).
To prioritize the loci that are most predictive for

patient survival in all three approaches, resampling
without replacement was performed on the training

data (see Methods). Based on the selected survival
predictive loci, we built multivariate Cox regression
models [8] using data from the respective molecular
platforms. For each particular approach and each
omics data, the model that showed the best perform-
ance on the training dataset was selected for perform-
ance evaluation on the test dataset. The accuracy of
the prognosis methods was assessed through the con-
cordance index. [9, 10]
Last, we used a combination of the above three ap-

proaches, which we call “combined approach”, where a
union of all the loci comprising selected molecular sig-
natures based on the above three approaches was used
to built new multivariate Cox regression models for each
molecular platform.

Fig. 1 Feature selection process using three different approaches illustrated for the miRNA hsa-mir-21 in the KIRC cohort. a “Extreme score stratification
approach”, where we compare the differences in the survival between “extremely” high expression values (Z-scores > 1, shown in blue) and “extremely”
low expression values (Z-scores < −1, shown in red). b “Mean score stratification approach”, where we compare the differences in the survival between
higher than average expression values (Z-scores > 0, shown in blue) and lower than average expression values (Z-scores < 0, shown in blue). c “Extreme
survival stratification approach”, where we search for significant expression differences between patients that died within the first year of diagnosis
(shown in blue), and patients that lived longer than 5 years (shown in red)
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Performance of “extreme score stratification”, “mean
score stratification” and “extreme survival stratification”
methods on different omics data validated on the test
KIRC cohort
The performance of the predictive models selected on
the training cohort was measured on the test cohort,
which has not been seen during the feature selection
and model selection steps. With the “extreme score
stratification” and “extreme survival stratification” ap-
proaches, the feature selection procedure relies on the
patients that have “extreme” values (omics measure-
ments or survival times respectively). This could lead to
a bias depending on the distribution of the patients with
“extreme” measurements in the training and test co-
horts. To eliminate any potential impact of the patients
distribution into train and test cohorts on the feature se-
lection and model selection steps, we performed 3-fold
cross validation. In this respect, the KIRC patients co-
hort was divided into three equally sized sets, and the

feature and model selection computations were repeated
three times, each time using two of the sets as training
data. After each training procedure, the excluded set was
used for performance evaluation of the selected model
(see Fig. 2).
Each of the described approaches has led to prognostic

models that have shown different performance for differ-
ent omics data (Fig. 3). For thorough comparison of the
respective approaches, we built and compared models
with different complexities, such that the number of
genomic loci included in the respective model ranges
from 1 to 10.
Averaged across the three cross validation rounds, the

“extreme score stratification” approach performs better
than the other approaches for protein expression data
and DNA methylation data (Fig. 3). The “mean score
stratification” approach on average performs better than
the other approaches for mRNA and miRNA expression
data. However, none of the approaches is statistically

a

b

Fig. 2 Flowchart of the analyses. a 3-fold cross validation procedure: the complete set of patients was distributed into three equally sized sets,
and each time two sets were used as a training data, while the remaining set was used as a test data. b Computational steps performed at each
cross-validation round on the training and test datasets
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significantly better than the others (see Additional file 1).
The combined approach is not superior to the other three
approaches because it tends to overfit the data, meaning
that it always performs the best on the training data, but

frequently it has suboptimal performance on the test data,
except for the CNV data where it is the best performing
method. However, these trends can be different in individ-
ual computational rounds, meaning that the survival

Fig. 3 Performance of different feature selection approaches (“extreme score stratification”, “mean score stratification”, “extreme survival
stratification” and combined approach) on different omics data on the KIRC cohort using 3-fold cross validation. The points at each plot show the
average values across the three cross validation rounds. For clarity, the standard errors are omitted here, but are shown in Additional files 1 and 3
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predictive performance of the different approaches applied
on the individual omics platforms can depend on the way
the data is stratified into training and test cohorts. Add-
itional file 2 shows the performance of the feature selec-
tion approaches on different omics data when only one
stratification of the patients into train and test cohort is
performed. Note that for this particular patient stratifica-
tion, a model based on DNA methylation data built using
the combined approach with six genomic loci performs
the best compared to all other models (C-index = 0.78).
Additional file 3 shows the standard deviations of the best
performing approaches for individual omics platforms.
The performance of the survival predictive models

based on mRNA/miRNA/protein expression and methy-
lation data is significantly better than a random guess, as
the confidence intervals for predictive power are above
0.5 (see Fig. 3 and Additional file 1).
We also included somatic mutation (SNP) data into our

analyses (see Fig. 3), however the above-described ap-
proaches were not directly applicable on these data. To
identify which mutated genes are linked to patient sur-
vival, for each gene we split the patients into two groups:
patients having a somatic mutation in that particular gene,
and patients with no somatic mutation in that gene. If the
difference in the survival between the two patient groups
is significant (p-value of log rank test < 0.05), we included
the corresponding gene in the multivariate Cox model.
Again the feature selection and model training was done
on the training cohort, while the model performance
evaluation was done on the test cohort.
Additionally, we tested whether individual SNPs within

genes are informative for patient survival, such that we
compared the survival of patients having a particular

somatic mutation with the survival of patients with no such
somatic mutation. However, we could not identify any indi-
vidual somatic mutation that is directly linked to patient
survival in the KIRC cohort. For successful identification of
such SNPs, if any, a larger set of patients is required.
Note that using miRNA and mRNA expression data,

Cox regression models based on only two loci have
already relatively good predictive performance; the per-
formance slightly increases when more genomic loci are
added to the model. Models built based on protein ex-
pression data require at least 3 or 4 loci to be included
in the model in order to achieve good performance.
We also constructed models based on clinical variables

only, such that we included patient gender, age, tumor
grade and tumor stage as clinical features. Notably, these
models gave very good survival prediction (C-index =
0.748, st.dev = 0.024) and were superior to any of the
predictive models built using molecular data only (see
Fig. 4a). To examine whether omics data can provide
additional prognostic power when used together with
clinical variables, we built predictive models by integrating
each type of molecular data with clinical variables (gender,
age, tumor grade and tumor stage). These integrated
models showed significantly improved predictive power
compared to omics-data-only models (Fig. 4). Only the
models based on expression and methylation data gave
better survival prediction on average compared to clinical-
variables-only models, however the prognostic gain was
very limited (Fig. 4b). Interestingly, integrative models
based on methylation and clinical data which rely on one
or four methylation markers gave the best performance
on average across the three cross validation rounds
(C-indexes on test data are 0.78 and 0.77, respectively).

Fig. 4 a Performance of predictive models built using individual omics data (miRNA/mRNA/protein expression, CNV segment means and DNA
methylation). The gray line denotes the performance of the model based only on clinical variables (gender, age, tumor grade and tumor
stage). b Performance of predictive models built using individual omics data (miRNA/mRNA/protein expression, CNV segment means and
DNA methylation) integrated with clinical data (gender, age, tumor grade and tumor stage). The plots show only the results for the best
predictive approach on each omics data, as shown on Fig. 3. The results were validated using 3-fold cross validation. For clarity, the standard
errors are omitted here, but are shown in Additional file 6
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High-throughput molecular data from different plat-
forms are not consistently available for all the patients.
Tumor samples from only 402 patients have been char-
acterized by all five molecular platforms that we ana-
lyzed; further 85 patients were characterized by four
molecular platforms only, 28 patients by only three
platforms; nine patients by only two platforms and for
one patient molecular information was available from
only one platform. For 12 patients, our collected data
contained no information for any of the studied mo-
lecular profiles. The availability of molecular data per
tissue type is summarized in Table 1. In our dataset
mRNA expression data was the most commonly avail-
able data type across tumor samples. Protein expression
data was available for only 123 proteins and not the en-
tire proteome.

Molecular biomarkers associated with overall patient
survival
Rather than building predictive models for patient risk
quantification, we aimed to provide insights into the mo-
lecular background of KIRC progression by identifying
candidate biomarkers that are associated with patient
survival. These candidate biomarkers could potentially
act as drug design targets for improved personalized
therapies. Table 2 lists candidate molecular biomarkers
that were identified by at least two of the approaches
with frequency of 100%. Interestingly, some of these
candidate biomarkers were identified as survival predict-
ive only by the “extreme stratification” approaches (the
“extreme score stratification” and “extreme survival
stratification”).
Micro RNAs are actively involved in KIRC patho-

genesis and several of them have been extensively
studied for their role in cancer initiation and progres-
sion [14–19]. Our results show that high expression of
mir-21, an established “oncomir” associated with a
wide variety of cancers [16], strongly correlates with
worse outcome prediction (see also Fig. 1). This
miRNA has the highest prediction accuracy of all miR-
NAs and it was selected in the single-loci miRNA

models as the most predictive. While high expression
of mir-10b is associated with worse outcomes in some
types of cancer [17], high expression of mir-10b is as-
sociated with better outcomes in KIRC patients. We
identified several protein coding genes as informative
for patient survival by the three approaches with fre-
quency of 100%. Higher expression of these genes is
linked to better prognosis (Table 2). Several known onco-
genes are on our list of most frequently selected predictive
protein-coding genes (SORBS2, LRBA, SH3BGRL2,
AMOT, ACADM, HLF, TIMP3). Our list of survival-
associated genes compiled using protein expression data
was dominated by oncogenes: GAB2, ERRFI1, CTNNA1,
CTNNB1, IGF1R, AR, SHC1, CDKN1A, IGFBP2 and
TSC2. The monitoring of the expression of these genes/
proteins might be useful in the clinical practice.
Using CNV data, no genes were identified as predict-

ive jointly by two approaches. Applying our approaches
on CNV data we could identify survival informative
genes, however during the resampling process they were
typically selected with lower frequencies (<60%). The top
10 selected genes based on CNV data by different ap-
proaches never overlapped and gave the worse predictive
performance compared to the other omics data.
DNA methylation is a common epigenetic alteration

that has been reported in many cancers [20–22]. Recent
high-resolution methylome study of KIRC patients
demonstrated that many kidney specific enhancers are
targeted by aberrant hypermethylation and are prog-
nostic for overall survival [23]. In line with these results
we have also identified many loci whose methylation
status is informative for overall survival (Table 2 lists
only a few of them, a longer list is given in Additional
file 4). Few of the prognostic methylation markers that
we identified seem to be correlated with the tumor
stage: later stage tumors tend to have increased methy-
lation at these loci (Fig. 5). In general, in the majority
of the genomic loci whose methylation status is associ-
ated with overall survival we observed hypermethyla-
tion across tumor samples (see Additional file 5). This
hypermethylation was generally linked to poor progno-
sis. The three methylation markers selected by the sin-
gle loci models in the three rounds are: cg26813907
(C19orf21), cg16419354 (FAM163A) and cg02812891
(ECEL1P2). These three markers were included in the
higher rank models in combination with other methyla-
tion markers.
The gene VHL, the most frequently mutated gene in

KIRC tumors [2], was not informative for patient sur-
vival. Only mutations in BAP1 and TP53 were selected
as informative for a subset of patients: these genes ap-
peared on the list of survival associated loci, but with
very low frequency of being selected during the resam-
pling process (<10%). A recent study has shown that

Table 1 Overview of high-throughput molecular data availability
by tissue type in TCGA KIRC patients

Molecular platform # patients with
molecular profile
in tumor tissue

# patients with
molecular profile in
normal adjacent tissue

miRNA expression 493 71

mRNA expression 518 72

Protein expression 454 0

CNV 511 510

DNA methylation 477 358
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somatic mutations within BAP1 are related to tumor
progression, but they do not define a category of patients
with a worse outcome [13].
Since the abundance of mir-21 is highly predictive for

survival as a standalone marker, we investigated whether
the high expression of mir-21 in KIRC tumor samples is

due to epigenetic changes in tumors or DNA sequence
alteration. Our analyses showed that the high mir-21
abundance in tumor samples is likely due to DNA
methylation changes in tumors. As Fig. 6 shows, normal
tissues have higher methylation along the mir-21 gene,
compared to tumor tissues. In tumor tissues, the

Table 2 Molecular biomarkers that were identified by at least 2 of the approaches with frequency of 100% in any of the three
cross-validation rounds

Molecular type Molecular biomarker Extreme
score stratific.

Mean score
stratific.

Extreme survival
stratific.

Survival prognosis association

miRNA hsa-mir-10b ✓ ✓ ✓ High expression in better outcome

hsa-mir-130a; hsa-mir-21 ✓ ✓ ✓ High expression in worse outcome

hsa-mir-190; hsa-mir-204; hsa- mir-676 ✓ ✓ High expression in better outcome

hsa-let-7i ✓ ✓ High expression in worse outcome

hsa-mir-130b; hsa-mir-18a; hsa- mir-365-1;
hsa-mir-223; hsa- mir-92b

✓ ✓ High expression in worse outcome

hsa-mir-3613 ✓ ✓ High expression in worse outcome

hsa-mir-374b; hsa-mir-590 ✓ ✓ High expression in worse outcome

mRNA ADH5; ARHGAP24; CLDN10; EHHADH;
EIF4EBP2; FBXL5; GIPC2; IMPA2; MFSD4;
SALL1; SORBS2; TPRG1L; LRBA; RBM47;
RETSAT; RGNEF; SH3BGRL2

✓ ✓ ✓ High expression in better outcome

AMOT; BBS1; CDC14B; EPHX2; FARS2;
KCNJ15; PINK1; RAB3IP; STK32B; ZNF704;

✓ ✓ High expression in better outcome

ACADM; ALDH6A1; AMD1; ANK3; ATP11A;
C5orf23; CCDC121; CLCN5; CPT2; CRYL1;
CYFIP2; DDAH1; DMRTA1; FCHO2l; MAP7;
MIA2; MOBKL2B; MRPS18B; NPR3; PANK1;
PRKAA2; PRUNE2; SLC16A12; SLC27A2;
SPATA18; TFEC; TMEM192; TMEM27; TMEM38B;
TOX3; WDR31;

✓ ✓ High expression in better outcome

ACOX1; ALDH3A2; HLF; TIMP3; TMEM150C;
UFSP2;

✓ ✓ High expression in better outcome

Protein AR; CTNNA1; CTNNB1; GAB2 ✓ ✓ ✓ High expression in better outcome

ACACA; CDKN1A; EA15; RAD51 ✓ ✓ ✓ High expression in worse outcome

ERRFI1; IGF1R; MAPK1 MAPK3; SHC1 ✓ ✓ High expression in better outcome

EEF2 ✓ ✓ High expression in worse outcome

TSC2 ✓ ✓ High expression in better outcome

IGFBP2; VASP ✓ ✓ High expression in worse outcome

DNA methylation
probes

cg03032025 (CPEB4) ✓ ✓ High methylation in worse outcome

cg14827391 (NXN)
cg15743907 (PDE4DIP)
cg16419354 (FAM163A)
cg24332577 (SALL4)

✓ ✓ High methylation in worse
outcome

Fig. 5 Stage specific methylation changes. Higher methylation levels (shown in red) are observed in stage III and stage IV patients, while lower
methylation levels (in green) are observed in stage I and stage II patients. “cgX” denotes the identifier of the plotted methylation probe
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methylation in these loci is altered, which likely results
in increase of mir-21 expression.

Integrative data analyses
For understanding the complex biological processes that
lead to cancer initiation and progression and extracting
maximal biological insights from molecular data, the in-
tegration of diverse omics data is of central importance.
It is crucial to know not only which genes are activated/
suppressed in cancers, but also what are the interactions
between these genes. In this respect, we searched for
causal regulatory interactions between the genes selected
as survival predictive markers from our study, confining
the search to the genes selected jointly by at least two
approaches (as presented in Table 2). Figure 7 shows a
regulatory network between several survival-associated
genes detected by our analyses. Central to this network is
the androgen receptor (AR), a steroid-hormone activated
transcription factor. In accordance with [2], our analyses
have shown that higher expression of AR protein is associ-
ated with better outcome in KIRC. However, the role of
AR in KIRC progression is not clear, as other studies have
found negative correlation between AR expression and
tumor stage [24]. The expression of AR is inhibited by

miRNA-18a in prostate cancer [25], and our analyses show
that lower expression of miRNA-18a is linked to better sur-
vival prognosis. AR transcriptionally regulates several other
genes (see Fig. 7), among which is the IGF-1 receptor
(IGF1R). IGF1R is a member of insulin receptor family and
it has been shown that in prostate and breast cancer cells
AR binds to IGF1R promoter and thus increases IGF1R
expression [26, 27]. The expression of IGF1R is inhibited by
miRNA-223 [28] and miRNA-let-7i [29] that negatively
associate with KIRC survival. However, another study has
shown that VHL inactivation in KIRC cells likely leads to
IGF1R upregulation and this contributes to renal tumori-
genesis and it is associated to worse outcome [30]. In
contrast to this, but in line with [2] we observed positive
correlation between IGF1R protein expression and KIRC
outcome. There are also discrepancies concerning the
impact of catenins, a family of cytoplasmic proteins, on
KIRC initiation and progression. In prostate and bladder
cancer decreased expression of β-catenin, E-cadherin, and
α-catenin was correlated with poor survival [31, 32]. Our
analyses on large cohort of KIRC patients have confirmed
this survival association for α- and β-catenins (see also [2]).
However, other studies on KIRC have found the opposite
[33, 34]. More detailed investigations about the molecular

Fig. 6 Interconnection between DNA methylation levels and RNA abundance illustrated for mir-21 in normal (red points) and tumor samples
(black points). KIRC tumor samples are characterized by lower methylation levels and increased mir-21 expression
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function of these proteins in KIRC tumors need to be
performed.
Finally, we integrated the selected prediction signa-

tures from the different omics data together to build
multi-omics survival prediction models (see Methods).
However, the prognostic performance of this multi-omics
prediction model has not improved significantly com-
pared to the models from individual omics platforms
(the C-index averaged across the three cross validation
rounds was 0.708).

Discussion
In this work we systematically evaluated patient survival
prediction based on large-scale molecular data in ~500
KIRC patients from the TCGA database. We presented
different computational approaches to identify survival
associated genomic loci and applied them on the differ-
ent molecular platforms to determine which omics data
as a standalone platform give the best prediction for
KIRC patient survival. Compared to previous studies,
our analyses better support tumor heterogeneity across
patients, since they were performed using different pa-
tient stratifications methods: we stratified the patients
based on their quantitative molecular values, but also
based on their survival times. Additionally, to make sure
that our results are robust to patient distribution in test
and training cohorts, all analyses were performed in

three rounds, using 3-fold cross validation, so that each
patient is seen once in the test cohort. In an earlier study
with a similar goal, but using different approaches, Yuan
et al. [35] established that molecular profiles from the
TCGA can complement the survival prognosis based on
clinical variables. Our analyses on KIRC patient cohort
show that when molecular data alone are used for sur-
vival prediction, miRNA/mRNA/protein expression and
methylation marks have statistically significant predictive
powers compared to a random guess. We evaluated the
prediction power of the molecular data using models
relying on different number of predictive loci. In general,
the predictive performance seems to saturate when more
than six genomic loci were present in the models and
did not improve significantly when more loci are added
to the models. Interestingly, protein expression and
DNA methylation data performed better than the other
omics data on the KIRC cohort (C-index ≈ 0.7). Yet, in
accordance to the findings in [35], clinical variables
alone were the most informative for survival prediction
in KIRC patients (C-index: 0.75). Importantly, integrative
models accounting on both, molecular and clinical vari-
ables performed better than the clinical-variables-only
model, however the gain in the prediction power was
limited (maximal C-index ~0.78). The limitation of the
molecular signatures to perfectly predict cancer survival
supports the view that cancer is an extremely complex

Fig. 7 Interactions between some of the genes/proteins selected as survival predictive by our analysis. The shape of the nodes in this network
corresponds to their biological function (see the legends on topleft). The genes/proteins that are underlined with purple are negatively associated
with clinical outcome (i.e. higher expression is linked to poor survival); the ones underlined with yellow are positively associated with outcome (higher
expression is linked to better survival). Higher methylation in genes underlined in blue is associated with worse outcome. This interaction network has
been generated using MetaCore bioinformatics software version 6.26 build 68498 from Thomson Reuters https://portal.genego.com [41]
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disease and it is heterogeneously defined within patients
[4]. Additionally, the therapeutic treatments that patients
receive after cancer diagnosis can have an impact on
their survival and have to be accounted in the survival
prediction models. However, the information about
therapeutic treatments is frequently unavailable (in the
TCGA KIRC cohort only 83 patients have information
about administered drugs), and frequently the patients
received a combination of drugs, which makes data in-
ferences even more difficult.
Previous studies using TCGA data have shown that

miRNA based signatures integrated with clinical vari-
ables yielded good prediction for KIRC patients [13, 35].
Our analyses confirm these results, but also shed light
on the importance of protein expression and DNA
methylation on alterations in KIRC tumorigenesis and
progression. Our results show that simultaneous meas-
urement of several differentially methylated genomic loci
could result in good survival prediction, at least for a
subset of patients. Most of the survival prognostic
methylation markers that we identified are hypermethy-
lations that occur in tumor tissues, but are absent in
normal tissues, and some of them even correlate with
the tumor stage. However, although previous studies
have found that KIRC tumors frequently have alterations
in genes with major roles in epigenetic regulation [2,
36–38], to our knowledge only a few studies on a small
number of patients have explored the usability of DNA
methylation markers as predictors of overall survival
[39]. A recent study identified a set of DNA methylation
biomarkers that can reliably distinguish tumor from be-
nign adjacent tissue and can serve as clinically applicable
biomarkers for early KIRC diagnosis [40]. The relation-
ship of DNA hypermethylation to KIRC formation and
progression is important to be considered in the light of
epigenetic cancer therapies that can reprogram tumor
cells toward a normal state.

Conclusions
We evaluated the potential of different large-scale omics
data in predicting the survival of patients with kidney
renal clear cell carcinoma. Our results suggest that for
estimating survival times of patients, in practice clini-
cians can rely on the clinical variables only. Models inte-
grating both molecular and clinical variables performed
statistically better than the clinical-variables-only model,
but the gain in the prediction power was very limited.
However, understanding the molecular changes is indis-
pensable in disease related research. The identification
of novel markers for diagnosis and survival prognosis
can facilitate our understanding of the molecular biology
of KIRC and can lead to identification of new points for
therapeutic actions. Our analyses do not necessarily

identify the KIRC causal changes; they rather identify
molecular markers that are affected by causal changes
and are associated with survival. They offer new pros-
pects for further investigations of KIRC pathogenesis.

Reviewers’ comments
Reviewer’s report 1: Martin Otava, PhD, Janssen
Pharmaceutica, Belgium
Reviewer summary:
The paper is well written and used methodology seems

to be appropriate. The authors approach the multiple
data sources with algorithm that is simple enough to fol-
low it, but simultaneously well designed and cross-
validated. Their interpretation of results is clear and
added value of their research and possible limitations are
nicely summarized. I consider the manuscript as very
good example how to extract information from multiple
high dimensional data sources and how to consequently
communicate the results with scientific public.
Still, there were few details that should be clarified for

the reader prior to acceptance of the manuscript. My
comments regarding this matter are summarized below.
Reviewer recommendations to authors:
1. pg 1: You claim that “Our analyses show that expres-

sion and methylation data have statistically significant pre-
dictive powers compared to a random guess, but do not
perform better than predictions on clinical data alone.”
However, I have not seen in the paper any formal stat-

istical justification of this claim. I understand that it
should be somehow based on the fact that confidence
intervals for predictive power are all above 0.5, but it
should be stated somewhere in manuscript explicitly.
Authors’ Response: We would like to thank to the re-

viewer for all valuable comments. Our claim that expres-
sion and methylation data have statistically significant
predictive powers compared to a random guess is indeed
based on the fact that confidence intervals for predictive
power are all above 0.5. This can be seen from the newly
added Additional files 1 and 6. We have added a text in
the manuscript explicitly stating that.
2. pg 3: In Section “Selection of predictive models”,

you explain that you fit Cox models with 1–10 predic-
tors. However, in Combined approach, you use union, so
you can potentially end up with 30 predictors. What will
you do in such a case? Please, elaborate on this in the re-
spective section.
Authors’ Response: In the “combined approach”, the

number of possible predictive markers can ranges up to
30 (actually in our data it goes from 17 to 30). To fit a
Cox model with 10 predictive markers for example, we
need to examine all possible combinations of 10 selected
markers (out of 30) and this is computationally very ex-
pensive. Because of that, in this approach we built
models with ranks up to six (this can be seen on Fig. 3).
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Regarding this, we have now added an explanation in
the section “Selection of predictive models”.
As stated on page 6, the Cox models built using this

approach tend to overfit the data, so we do not expect
that their performance on the test data will be im-
proved by adding more predictor variables in the
models. Therefore, running highly expensive computa-
tions is not justified.
3. pg 4: These page should be pruned significantly, be-

cause lot of information is redundant given thorough
descrition in Methods section. The description of algo-
rithm is not needed here (especially given that it is re-
peated again in caption of Fig. 1, which is actually very
handy), present only the results here.
Authors’ Response: We have shortened this section by

removing the sentences were the algorithm description
was redundant.
4. pg 6: “The “mean score stratification” approach per-

forms better than the other approaches for mRNA and
miRNA expression data.”
Although you do not state anything about statistical

significance here, it may give impression that there is
some evidence for this conclusion further than means
comparison. Looking at Additional file 3, I doubt that if
you show all confidence intervals, any approach would
be significantly different/better than other. It is all fine,
but I would prefer to have it more clearly stated in
manuscript that the differences are rather subtle.
Authors’ Response: We have added all confidence in-

tervals to the Additional file 1. Indeed, none of the ap-
proaches is statistically significantly better than the
others. We have added a sentence in the manuscript
clearly stating that.
5. pg 14: “Importantly, integrative models accounting

on both, molecular and clinical variables performed bet-
ter than the clinical-variables-only model, however the
gain in the prediction power was limited (maximal C-
index ~0.78).”
Based on this, would you actually suggest clinician in

practise to use the molecular variables or to use clinical
variables only and use molecular variables rather in dis-
ease related research than in everyday practice?
Authors’ Response: Yes. Our results suggest that in

practice the clinicians can rely on the clinical variables
to give an estimate for the survival time of the patients.
However, understanding the molecular changes is indis-
pensable in disease related research and can lead to
identification of new points for therapeutic actions. This
is discussed in the Discussion section of the manuscript.
6. Minor comments: pg 2: add reference to R in Data

preprocessing section
Authors’ Response: The reference is added (ref [7]).
7. pg 2: “The patients were assigned into three equally

sized sets: n1 = 178, n2 = 178 and n3 = 177, such that no

bias in terms of survival time and vital status was ob-
served in each of the sets.”
It is not clear, how the assignment was done. Were

patients distributed randomly and then average survival
time and vital status of groups were checked and no
difference observed? Or have you distributed patients
already in a way that survival time and vital status is
similar in all three groups, based on some algorithm? The
word “bias” does not seem appropriate here, I would
rather state simply “no clear difference was observed
among three sets, in terms of survival time and vital status”.
Authors’ Response: We distributed the patients in a

way that survival time and vital status is as similar as
possible in all three groups. We proceeded such that we
first ordered the patients based on their survival/follow-
up time and then we distributed each of the consecutive
patients to one of the three sets. This way there were no
clear differences in the average survival time and vital
status of the groups.
We have added an explanation about this in the

manuscript (section “Identification of prognostic markers
associated with overall patient survival”)
8. pg 2: typo “survival- associated”
Authors’ Response: The typo is corrected.
9. pg 3: “We required that each stratified patient group

contains at least 10 patients”
Please, add why you have chosen 10.
Authors’ Response: We required that each stratified

patient group contains at least 10 patients to make sure
that our selected predictive markers are informative
(common) for substantial set of patients, i.e. are as gen-
eral as possible. This way we avoid selecting predictors
that work only for 1–2 patients on the test data. But the
choice of exactly 10 patients was somewhat arbitrary.
We added a text in the manuscript that describes this.
10. pg 3: “For each of the approaches we selected the

top 10 most frequently selected genes/probes as survival
predictive markers.”
Please, separate visually from the text of approach 3,

since it applies to all three approaches, no?
Authors’ Response: Yes, it applies to all three approaches

and we have separated it from the text of approach 3.
11. pg. 14 typo in “Akaike”
Also, this should be mentioned in Methods, not here.

Additionally, I would require more information on how
“the forward model selection procedure combined with
Cox regression” was done.
Authors’ Response: The typo is corrected. We have

added an explanation about this in the Methods section
and added more information about the way we did the
computations (last paragraph of the section “Selection of
predictive models”). Additionally, we corrected one unin-
tentional mistake: in our computations we actually used
backward (instead of forward) model selection procedure.
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12. Throughout paper: make sure that there as spaces
around inequalities “Z < 0” etc. It would improve readability
Authors’ Response: We have corrected this.

Reviewer’s report 2: Hendrik Luuk, PhD, The Centre for
Disease Models and Biomedical Imaging, University of
Tartu, Estonia
Reviewer summary:
The paper is well written and it’s purpose is clear. The

authors have tested four scenarios for identifying molecu-
lar features predictive of survival of 533 patients with kid-
ney renal clear cell carcinoma. Model performance was
estimated using 3-fold cross-validation and concordance
index (C-index). The authors find that clinical variables
alone were the most informative for survival prediction in
KIRC patients. Some comments below.
Reviewer recommendations to authors:
1. Approximately, what fraction of measurements fell

into the “extreme” group? For normally distributed, data
one would expect around 15%, which sounds more like
a “moderate” amount.
Authors’ Response: We would like to thank this re-

viewer for the valuable comments on our manuscript.
Generally, about 15% of samples fell into one “extreme”
group. So under the “extreme score stratification” ap-
proach for each molecular value we consider roughly
30% of the samples in the calculations.
2. How many iterations of the 3-fold cross-validation

were performed (assuming each iteration contained
patients randomly partitioned into three groups)? I’m
asking this, because it would be nice to see error-bars
in Figs. 3 and 4. Otherwise it is impossible to say whether
there is a performance difference between the approaches.
Supplementary figures appear to include error bars
only for the best performing approach, which are not
meaningful alone.
Authors’ Response: In the feature selection procedure,

we used resampling with replacement on the train data
and performed 100 iterations. Based on the top selected
features (predictors), in each cross validation round and
for each model size we selected the best performing model
on the train dataset and tested it on the validation data-
set. So in each cross validation round we end up with
one “final” model with a certain size (1–10 predictors)
whose performance we evaluate. As we did 3-fold cross
validation, the error bars are quite high. We have added
new figures: Additional files 1 and 6 that correspond to
Figs. 3 and 4 but include error bars. Additionally, we
have added an explanation in the manuscript that none
of the approaches is statistically significantly better than
the others.
3. I didn’t see a reference to the source of the regula-

tory network shown in Fig. 7.

Authors’ Response: The regulatory network shown in
Fig. 7 was generated using MetaCore bioinformatics soft-
ware version 6.26 build 68498 from Thomson Reuters
https://portal.genego.com [41]. This is now added to the
caption of Fig. 7.
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Additional file 1: Survival predictive performance on different omics
data on the KIRC cohort using 3-fold cross validation. This is the same as
Fig. 3, but with included standard errors for all approaches on each omics
data. (PNG 496 kb)

Additional file 2: Performance of different feature selection approaches
(“extreme score stratification”, “mean score stratification”, “extreme
survival stratification” and combined approach) on different omics data
on the KIRC cohort in the first cross validation round (i.e. when only one
distribution of the patients into train and test cohorts is performed).
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data on the KIRC cohort using 3-fold cross validation. This is the same as
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Additional file 4: List of DNA methylation loci that were identified as
associated with KIRC patient survival by at least one of the feature
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Additional file 6: A) Performance of predictive models built using
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means and DNA methylation). The gray line denotes the performance of
the model based only on clinical variables (gender, age, tumor grade and
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