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Abstract

Background: Significant efforts have been made to address the problem of identifying short genes in prokaryotic
genomes. However, most known methods are not effective in detecting short genes. Because of the limited
information contained in short DNA sequences, it is very difficult to accurately distinguish between protein coding
and non-coding sequences in prokaryotic genomes. We have developed a new Iteratively Adaptive Sparse Partial
Least Squares (IASPLS) algorithm as the classifier to improve the accuracy of the identification process.

Results: For testing, we chose the short coding and non-coding sequences from seven prokaryotic organisms. We
used seven feature sets (including GC content, Z-curve, etc.) of short genes.
In comparison with GeneMarkS, Metagene, Orphelia, and Heuristic Approachs methods, our model achieved the best
prediction performance in identification of short prokaryotic genes. Even when we focused on the very short length
group ([60–100 nt)), our model provided sensitivity as high as 83.44% and specificity as high as 92.8%. These values are
two or three times higher than three of the other methods while Metagene fails to recognize genes in this length range.
The experiments also proved that the IASPLS can improve the identification accuracy in comparison with other widely
used classifiers, i.e. Logistic, Random Forest (RF) and K nearest neighbors (KNN). The accuracy in using IASPLS was
improved 5.90% or more in comparison with the other methods. In addition to the improvements in accuracy, IASPLS
required ten times less computer time than using KNN or RF.

Conclusions: It is conclusive that our method is preferable for application as an automated method of short gene
classification. Its linearity and easily optimized parameters make it practicable for predicting short genes of newly-
sequenced or under-studied species.

Reviewers: This article was reviewed by Alexey Kondrashov, Rajeev Azad (nominated by Dr J.Peter Gogarten) and Yuriy
Fofanov (nominated by Dr Janet Siefert).
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Background
Small proteins have recently been discovered to play im-
portant roles in biological functions. Such discovery im-
plies that the short protein coding sequences are worthy
of much more research [1-3]. Significant efforts have been
made previously to address the problem of short gene
identification. Gao and Zhang [4] evaluated 19 feature
extraction algorithms. They preferred the Z-curve
methods for analyzing the short human sequences
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reproduction in any medium, provided the or
while considering both the recognition accuracy and
the computational simplicity. In addition to Gao and
Zhang’s work, Song et al. assessed eight state-of-the-art
linear and kernel-based supervised pattern recognition
techniques [5]. Saeys et al. [6] developed and compared
complementary sequence features with several models
in coding protein prediction (CPP) problems of ani-
mals, plants, Fungi, and Apicomplexa. Various classi-
fiers and new feature extraction methods have also
been exploited or developed for short gene identifica-
tion [7-11].
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In addition to these works on eukaryotic genomes,
methods were also developed for short prokaryotic gene
identification. The GeneHacker program was proven
quite reliable in identifying short genes (those shorter
than 300 nt) in cyanobacterial genomes [12]. The
Metagene program was developed in 2006 by Noguchi
et al. It was used to derive the model for 116 bacterial
and 15 archaeal species to distinguish coding and non-
coding DNA sequences [8]. The GeneMarkS program
was shown to outperform other existing methods in
identifying short genes in the E. coli genome [13].
Orphelia is a program for predicting protein coding
genes in short fragments with unknown phylogenetic
origin [14], as is the EasyGene [15] program.
However, due to the limited information provided by

the very short DNA sequences, most current methods
are limited in their abilities to detect very short genes.
We used the short protein coding sequences of E. coli
K-12 MG1655 to evaluate the ability of GeneMarkS [16],
Metagene [8], Orphelia [14] and Heuristic Approach
(HA) [17] programs in finding short genes. It can been
seen in Figure 1 that gene prediction performance de-
creases with length and drops sharply for fragments
shorter than 200 nt. The results clearly illustrated that
prediction of short genes are beyond the detection abil-
ity of these tools.
Some research studies have also been made by Goli

and Nair [3]. They combined various properties as the
features of short DNA sequences. They then employed
a Fast Correlation Based Feature Selection (FCBFS)
technique [18] for dimension reduction. They also used
the AdaBoost.M1 method in conjunction with the Ran-
dom Forest (RF) method as the classifier. This resulted
in a sensitivity of 94.77% and a specificity of 90.06% on
short gene classification. Although the accuracy indi-
cated above was somewhat improved, it is still not high
enough [11,19].
Figure 1 Accuracies of Four Programs to detect short genes.
Because of the limited length of short DNA sequences,
it is difficult to extract features containing enough useful
information. For certain feature extraction methods, the
shorter the length of DNA sequences, the larger the
number of the uninformative features. For the famous
Z-curve method [20,21] for example, the shorter the
length of DNA sequences, the lower the frequencies of
certain tri-nucleotide patterns. Therefore, as more ele-
ments approach zero, the more they become uninforma-
tive features. The same is true of the k-mer frequencies
approach and the Rho statistic approach. The features of
both of them are calculated from nucleotide frequencies.
Consequently, the important features are deemphasized
by the unimportant data. The methodology of some fea-
ture extraction methods (Z-curve, etc.) indicates there
are strong multi-collinear relationships among the fea-
tures [3]. The classifiers for short sequence recognition
problems must be influencial in handling the above
mentioned adverse factors inherent in the original data
set. Hence, we proposed a novel Iteratively Adaptive
Sparse Partial Least Squares (IASPLS) method aimed at
improving the prediction accuracy without increasing
computational or memory cost. IASPLS can iteratively
adapt the penalty parameters of the Singular Value
Decomposition (SVD) step according to the importance
of the variables. From the results of the experiments, we
found that IASPLS achieved better prediction accuracy
than the regular SPLS.
We chose the short coding and non-coding sequences

from seven prokaryotic organisms as the samples to test
the performance of the proposed method. Those are
E. coli K-12 MG1655, E. coli UT189 (UPEC), Buchnera
aphidicola 5A, Enterobacter 638, K. pneumoniae 342
and Y. pestis KIM 10, Bacillus subtilis 168.
Compared with GeneMarkS, Metagene, Orphelia, and

Heuristic Approach methods, our model achieved better
prediction performance in short gene classification. On



Table 1 Datasets of the organisms

Length distribution Positive samples Negative samples

[60,100) 705 3403

[100,200) 1693 5657

[200,300) 2603 2728

[300,400] 2132 1372
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the very short genes (<100 nt), it provided sensitivity as
high as 83.44% and specificity as high as 92.8%. These
values are two or three times higher than three of the
other methods while Metagene even fails to recognize
genes in this length range.
When combined with a voting system, the IASPLS clas-

sifier improved the classification specificity to 94.13%
compared with Goli and Nair’s method.
In comparison with the Random Forest (RF) and the

K-Nearest Neighbors (KNN) algorithms, IASPLS im-
proved the prediction accuracy by 5.90% and 7.23%,
respectively.
Since IASPLS is a linear method, it can reduce the cal-

culation time by as much as ten times compared to RF
or KNN. The application of IASPLS strongly confirmed
the theoretical findings. Another advantage of this
method is that neither the well-characterized biological
features nor the parameter optimization methods are
needed. Thus use of IASPLS is very effective and prac-
tical for predicting short genes of newly-sequenced or
under-studied species. In this study we (1) presents the
improved prediction results of IASPLS to classify short
prokaryotic genes (2) describes the IASPLS algorithm in
details.

Results and discussions
The details of the IASPLS algorithm to classify short
prokaryotic genes are described in the methods section.
In our experiments, the prediction performance of
IASPLS was evaluated using seven prokaryotic organ-
isms whose data could be obtained from the IMG data-
base. We also showed that IASPLS provided better
prediction accuracy than Goli and Nair’s method. At
last, the comparison results of IASPLS with other fam-
ous classifiers showed the superiority of it obviously.

Comparison with other prokaryotic gene finding tools
Since evaluation of the performance of the proposed
method requires comparisons with other available
methods, we compared the performance of our algo-
rithm with those of other popular existing methods
with different length classes, i.e., GeneMarkS, Heuristic
Approach (HA), Metagene and Orphelia. GeneMarkS
utilizes a heuristic approach that builds a set of Markov
models using a minimal amount of sequence informa-
tion [16]. HA is a developed version which uses the lin-
ear functions between nucleotide frequencies and
genomic GC content to reconstruct the Markov models
in order to find genes in different organisms [17].
MetaGene gives all possible ORFs (Open Reading
Frames) of the input sequences, and then uses the log-
odds scoring scheme to score them by their base com-
positions and lengths [8]. Orpehelia is based on a kind
of machine learning algorithm developed from an
artificial neural network. It extracts several sequence
features including monocodon usage, dicodon usage
and translation initiation sites etc. Orpehelia then com-
putes a posterior probability of an ORF to encode a
protein [14]. The four programs can be run through
their websites. The URLs of the websites of these four
algorithms are shown in the Additional file 1.
The sequences were from seven organisms mentioned in

Section Databases and Features. Since we were interested
in evaluating the accuracy of prediction algorithms for
short genes, all sequences were divided into length clas-
ses: [60–100 nt), [100–200 nt), [200–300 nt), [300-400 nt].
Ultimately, we obtained the 4 different datasets shown in
Table 1. To obtain a balanced dataset for each length class,
we used the same number of negative and positive exam-
ples. Then we applied a 5-fold cross-validation method to
test them.
The results of the comparison were given in Table 2.

We also calculated the average values of the sensitivity
and specificity of different length groups. The graphs of
the sensitivity and specificity vs. sequence lengths are
shown in Figures 2 and 3.
When we focused on the very short length group

([60–100 nt)), we noted that our model outperformed
the other four models. Metagene was unable to identify
the very short sequences demonstrating that this pro-
gram is inapplicable for this length range. Orphelia
achieved the highest sensitivity, 90.21%, but the lowest
specificity, 22.13%. GeneMarkS and HA both yielded
very poor sensitivity (31.91% and 16.60%) and specificity
(59.48% and 79.25%) measurements. Our model, how-
ever, presented a better prediction performance in both
sensitivity (83.44%) and specificity (92.88%). This illus-
trates that prediction performance of the very short cod-
ing sequences can indeed be improved markedly by
IASPLS.
For the length groups ([100-200 nt), [200–300 nt) and

[300–400 nt]), shown in Figure 2, sensitivities of all
methods increased with sequence length. GeneMarkS
had the highest sensitivities, but its specificities are not
acceptable. The same phenomenon was also shown by
HA. In comparison to GeneMarkS and HA, IASPLS had
a higher specificity; more than 20%. Orphelia presented
good specificities but unacceptable sensitivities in these
length ranges. Table 2 shows that IASPLS has better



Table 2 The best recognition results obtained by
different methods*

Length [60,100) [100,200) [200,300) [300,400]

Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%) Sn(%) Sp(%)

Orphelia 90.21 22.13 60.07 58.90 83.57 83.65 81.97 90.87

GeneMarks 31.91 59.48 85.17 63.51 95.34 64.84 98.08 61.44

HA 16.60 79.25 76.43 74.70 94.48 74.41 96.96 71.64

Metagene # # 54.45 57.23 88.70 55.64 95.29 70.84

IASPLS 83.44 92.80 84.57 84.92 94.91 95.32 97.82 97.50

* ‘#’ represents there is no prediction result.
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performance in both sensitivity and specificity than
Orphelia and Metagene.
In conclusion, GeneMarkS provided outstanding sensi-

tivities but poor specificities for most sequence lengths
longer than 100 nt. Orphelia provided an outstanding
sensitivity for very short sequence (shorter than 100 nt).
IASPLS consistently provided the best prediction per-
formance in both sensitivity and specificity across all the
sequence lengths.

The performance comparison between IASPLS and Goli
and Nair’s method
In 2010, Goli and Nair (GN) assembled six prokaryotic
organisms for the purpose of predicting short coding se-
quences. They defined short coding sequences as frag-
ments in length between 60 nt and 400 nt [3]. We used
the same samples and features as GN used. The samples
were the short coding and non-coding sequences of the
following six organisms: E. coli K-12 MG1655, E. coli
UT189 (UPEC), Buchnera aphidicola 5A, Enterobacter
638, K. pneumoniae 342 and Y. pestis KIM 10. The
whole data set included 4907 coding and 3736 non-
coding sequences. We used two-thirds of the coding and
non-coding samples as the training set and the rest of
Figure 2 Sensitivities of the Five Prediction Programs.
the samples as the testing set just as GN did. We used
the majority voting strategy as mentioned above. We
also applied the 5-fold cross-validation method in the
training step as GN did.
The best prediction results comparing the IASPLS and

of GN’s method are shown in Table 3. Table 3 shows
that there are improvements of 4.14% in specificity,
2.65% in sensitivity and 3.35% in ACC by using IASPLS.
MCC was also improved as much as 0.06 by using
IASPLS. MCC is a balanced measurement considering
the different sizes of classes. The demonstrated improve-
ment in the accuracy confirms the effectiveness of our
method.
IASPLS is a linear method while GN is a combination

of AdaBoost.M1 and Random Forest methods. IASPLS
does not require optimization of parameters while GN
requires several parameters to be optimized. It is for this
reason that IASPLS has superiority in complexity. Such
superiority is definitely helpful in saving computer time
and memory cost.

Comparison with other widely used classifiers
To further verify the prediction accuracy of IASPLS, we
compared it with other widely used classifiers, i.e., Logis-
tic, K-Nearest Neighbors (KNN) and Random Forest
(RF). All of these methods have been successfully applied
in solution of biological problems [3,8,22,23]. Consider-
ing the number of the samples and variables for KNN, k
was selected from the set {1,3,5} using a three-fold
cross-validation method [24]. Then for RF, the number
of trees was chosen as 500 [25]. The voting process was
repeated 20 times to reduce the bias caused by random
partition of the training samples. The average values of
the 20 voting processes were used as the final results.
The best prediction results of the four methods are

listed in Table 4. The results show that IASPLS obtained



Figure 3 Specificities of the Five Prediction Programs.

Table 3 Performance comparison of IASPLS with Goli and
Nair’ method*

Method Results on test set

Sn (%) Sp (%) ACC (%) MCC

Goli and Nair’ method 91.26 89.89 90.67 0.81

IASPLS 93.91 94.13 94.02 0.87

*The better results between these two algorithms evaluated here were shown
in boldface.
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the highest sensitivity (94.12%), specificity (94.15%), ac-
curacy (94.14%) and MCC (0.88). The Logistic model
showed an excellent calculation speed of 50.3 s. Its ac-
curacy, however, was unsatisfactory. There was also a
very poor tradeoff between sensitivity and specificity.
Accuracy obtained in using IASPLS was improved 5.90%
and 7.23% respectively in comparison with RF and KNN.
Calculation time per round for IASPLS was about

150 s compared with 1500 s for KNN or RFa. It is neces-
sary to run the program dozens of times to optimize the
parameters for each set of data. Therefore, considering
both prediction performance and computer time re-
quirement, IASPLS application is highly preferable in
solving short coding sequence recognition problems.

Methods
The iteratively adaptive sparse partial least squares
algorithm
Due to the superiority of visualization and dimension re-
duction, partial least squares (PLS) algorithm has been
widely used in analyzing biological problems [5,26,27].
PLS can successfully handle the noise and multi-
collinearity inherent in the raw data by extracting or-
thogonal Latent Variables (LVs) from them. PLS, being a
linear algorithm, has an exceptional property for saving
calculation cost over any non-linear method. More de-
tails about PLS can be found in the Additional file 1.
Sparse Partial Least Squares (SPLS) algorithm, a gener-

alized algorithm of PLS, possesses the above mentioned
superiorities of PLS. The introduced penalties in the Sin-
gular Value Decomposition (SVD) step of PLS allow the
SPLS to eliminate the low Signal-to-Noise-Ratio and un-
informative variables to a certain extent. The method-
ology of the SPLS is as follows. More details can be
found in the Additional file 1.
For regular PLS, u and v, the weighting vectors of X
and Y, respectively, can be obtained through the SVD
analysis of M, where M = XTY. The criterion for
extracting u and v is to minimize the residual sum of
squares between M and its low rank approximation:

min
u;v

M−uv0k k2 ð1Þ

where M−uv0k k2 ¼
X

i ¼ 1

p
∑q
j¼1 mij−uivj

� �2
.

In order to save computational time, Anh et al. intro-
duced regularization into the SVD step of PLS to achieve
the sparseness of u and v [26]. The optimization objective
function therefore becomes:

min
u;v

M−uv0k k2 þ 2λ1∑
p
i¼1 uij j þ 2λ2

X
j ¼ 1

q
vj
�� �� ð2Þ

where λ1 and λ2 are the penalty parameters, |∗ | is the
absolute value of ∗, and ui and vj are the elements of u
and v, respectively. Through the penalties, some of ele-
ments in u and v are forced to zero because their absolute
values are smaller than the soft-threshold. The immediate
resulting consequence is the sparseness of u and v, hence
the name SPLS (Sparse PLS).
Unfortunately, the SPLS algorithm still has shortcom-

ings. The use of constant penalty parameters to select



Table 4 The best results obtained by different classifiers*

Classifiers Results

Sn(%) Sp(%) ACC(%) MCC Time(seconds)**

IASPLS 94.12 94.15 94.14 0.88 151.2 s

Logistic 93.58 87.72 91.05 0.82 50.3 s

SPLS 93.14 93.48 93.29 0.86 146.2 s

KNN(k = 1) 89.33 83.73 86.91 0.73 1584.1 s

Random Forest
(trees = 500)

88.65 87.71 88.24 0.76 1646.5 s

*The best results among the algorithms evaluated here were shown
in boldface.
**Time was the computational time of one round of training-testing process.
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variables in SPLS leads to the following undesirable re-
sults [28,29]:

� The contribution of the informative variables with
large absolute penalty parameters, which are above
the soft-threshold, may be diminished.

� Without enough prior knowledge, the useful
variables may be deleted by error.

To overcome such shortcomings, we developed an It-
eratively Adaptive Sparse Partial Least Squares (IASPLS)
algorithm. IASPLS can adapt the values of the penalties
according to the importance of the variables. Thus, we
used the following objective function in the SVD step in-
stead of using Eq. (2):

min
u;v

M−uv0k k2 þ 2λ1∑
p
i¼1f xið Þ uij j þ 2λ2

X
j ¼ 1

q
vj
�� ��

ð3Þ
where f(xi) is a function of variables xi, i = 1,2…p.
Theoretically, the function of the penalty parameters is

two-fold: a) the weighting value of an unimportant vari-
able should be forced to zero by use of a large enough
penalty parameter. b) the contribution of an important
variable should be enhanced by use of a comparatively
smaller penalty parameter. Consequently, f(xi) should
become a certain kind of non-increasing function to the
importance of xi.
A classifier should be able to predict short sequences

that are not limited to well-studied organisms. Hence
the function/parameters which need to be optimized or
selected should be as simple as possible. Although many
linear and non-linear non-increasing functions can be
chosen as f(xi), considering the practicality of the pro-
posed method, we used f(xi) = 1/|βi|, where βi is an im-
portance index of variable xi. The Eq. (3) can then be
written as:

min
u;v

M−uv0k k2 þ 2λ1∑
p
i¼1ωi uij j þ 2λ2

X
j ¼ 1

q
vj
�� �� ð4Þ

where ωi = 1/|βi|.
Supervised pattern recognition problems may be treated
as univariate regression problems. The dependent variables
in these problems are defined as y∈{-1,+1} in two-class
problems or as y∈{1, 2, …, G} in multi-class problems.
Here, G is the number of classes. In this instance, because
there is only one element in v, the penalty parameter λ2
will be so insignificant in variable selection that it may be
neglected. Eq. (4) can be further simplified as Eq. (5):

min
u;v

M−uv0k k2 þ 2λ1∑
p
i¼1ωi uij j ð5Þ

For a univariate PLS model, the absolute values of co-
efficients can be used to measure the relative importance

of variables [30]. Accordingly, we can use ωi ¼ 1=
⌢
bi
���

��� ,

where
⌢
bi is the element of the regression coefficient

matrix
⌢
B , which was estimated by the Ridge Regression

method.
According to the methodology of PLS, it may be noted

that the latent variables are extracted one by one. The
number of LVs should be optimized to get good trade-
off between the extracted information and the deleted
information (treated as noise). For the same variable, dif-
ferent numbers of LVs can lead to different coefficient
values. To further improve the recognition performance,
it is preferable to evaluate the variables’ importance it-
eratively. Accordingly, we named the proposed method:
IASPLS (Iteratively Adaptive SPLS). The Pseudo-code
for IASPLS can be found in Additional file 1.

Databases and features
In our experiments, we used the short coding and non-
coding sequences from seven prokaryotic organisms: the
Gram-negative bacterium E. coli K-12 MG1655 (IMG:
Gc00008), and its five related organisms E. coli UT189
(UPEC) (IMG: Gc00364), Buchnera aphidicola 5A (IMG:
Gc00919), Enterobacter 638 (IMG:Gc00542), K. pneumoniae
342 (IMG: Gc00841) Y.pestis KIM 10 (IMG: Gc00095),
and the Gram-positive bacterium Bacillus subtilis 168
(IMG: Gi03234). All these sequences can be obtained
from IMG 4 database (http://img.jgi.doe.gov/cgi-bin/w/
main.cgi) [31].
We used the following features as the variables in the

short gene recognition problems:

� Z-curve features
� 16 physicochemical and 49 conformational

properties;
� 84 k-mer frequencies (k = 1, 2 and 3) features;
� GC content, Codon Usage Bias (the frequency of

optimal codons Fop) and Codon Adaptation Index
(CAI);

� Four base compositions at synonymous third codon
positions);

http://img.jgi.doe.gov/cgi-bin/w/main.cgi
http://img.jgi.doe.gov/cgi-bin/w/main.cgi
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� Amino acid properties (hydrophobicity and
aromaticity);

� Rho statistic.

The Z-curve parameters are calculated for the fre-
quencies of frame-dependent k-mers (1 ≤ k ≤ 3), using
the Z-transform of DNA sequences, as exemplified in
Song [32]. There are a total of 252 Z-curve features. The
details of six other types of features can be found in Goli
and Nair [3]. Using these features, DNA sequences could
be transformed into a data set with 429 variables. Since
there are several thousand samples, we preferred the
majority voting strategy to lessen the dependence of the
data-driven methods on the orders of the samples. In
the training step, we randomly rearranged the training
samples and divided them into K sub-blocks. We then
used them to train K models to predict the labels of the
testing samples. K should be an odd number for the ma-
jority voting strategy. Then there would be K predicted
labels calculated from these K models for a given testing
sequence. If more than half of the K predicted labels
were ‘+1', the corresponding sequence could be assumed
to be a coding sequence. If not, it would be assumed to
be a non-coding sequence.

The performance measurements of the classifiers
We used sensitivity (Sn), specificity (Sp), accuracy (ACC)
and Matthew’s Correlation Coefficient (MCC) [33] as
the measurements to evaluate the prediction perform-
ance of the classifiers. They can be defined as follows:

Sn ¼ TP
TP þ FN

ð6Þ

Sp ¼ TN
TN þ FP

ð7Þ

ACC ¼ TP þ TN
TP þ FP þ TN þ FN

ð8Þ

MCC ¼ TP � TN þ FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ � TP þ FPð Þ � TN þ FNð Þ � TN þ FPð Þp

ð9Þ

TP, TN, FP, and FN are fractions of true positive, true
negative, false positive and false negative predictions,
respectively.
The sensitivity, Sn, is the proportion of sequences that

are known as coding sequences and were correctly pre-
dicted as coding sequences. The specificity, Sp, is the
proportion of sequences that are known as non-coding
sequences and were correctly predicted as non-coding
sequences. The ACC is the proportion of the sequences
that has been correctly predicted and the MCC is a bal-
anced measurement of classification with different sizes
of classes.
Conclusions
In this paper, we developed a new IASPLS algorithm as
a classifier to recognize short prokaryotic genes with
high accuracy. To test it, we compared it with the most
popular gene-finding softwares: GeneMarkS, Heuristic
Approach (HA), Metagene and Orphelia. Our model
achieved a significantly improved prediction perform-
ance in identification of short prokaryotic genes. Even in
predicting the very short gene sequences, in the length
of 60-100 nt, IASPLS provided sensitivity as high as
83.44% and specificity as high as 92.8%. Metagene fails
to recognize genes in this length range. Orphelia
achieved the highest sensitivity, 90.21%, but the lowest
specificity, 22.13%. GeneMarkS and HA both yielded
very poor sensitivity (31.91% and 16.60%) and specificity
(59.48% and 79.25%) measurements.
We compared the IASPLS method with the method

developed by Goli and Nair. The improvements of 4.14%
in specificity, 2.65% in sensitivity and 3.35% in ACC
were obtained by using IASPLS. Improvement over
MCC was as much as 0.06 by using IASPLS.
The experiments also proved that the IASPLS can im-

prove the identification accuracy in comparison with
other widely used classifiers, i.e. Logistic, Random Forest
and K Nearest Neighbors. The results show that IASPLS
obtained the highest sensitivity (94.12%), specificity
(94.15%), accuracy (94.14%) and MCC (0.88). In addition
to the accuracy improvement, IASPLS required ten
times less computer time than using KNN or RF.
The simplicity of IASPLS makes it more user friendly

for biologists. Such simplicity also makes it more prac-
tical for performing research on new or under-studied
genomes without any prior knowledge. IASPLS can be
run on ordinary personal computers or laptops with run
times of several minutes. Other algorithms may require
more sophisticated computers or take longer computer
times on personal computers or laptops.

Endnote
aAll algorithms were operated in MATLAB R2009a,

the operation system was a 32-bit Windows XP, and the
PC had 1.8G Core CPU with 2G RAM.
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can be easily corrected. Whether this algorithm will con-
sistently perform better than others remains to be seen,
but it is worth publishing.
Quality of written English: Needs some language cor-

rections before being published.

Reviewer’s report 2: Dr Rajeev Azad (nominated by Dr J.
Peter Gogarten): University of Connecticut, United States
of America
Reviewer comments:
Significant efforts have been made previously to ad-

dress the problem of short gene identification in pro-
karyotic genomes. Long genes are reliably detected by
most current methods, however, many methods are lim-
ited in their abilities to detect short genes. Frequently used
popular gene prediction programs such as GeneMark and
EasyGene were developed to address the problem of
spurious prokaryotic gene detection. Methods were also
developed specifically to reliably detect short protein-
coding genes, see for example, the paper by Yada and
Hirosawa (Detection of short protein coding regions
within the cyanobacterium genome: application of
the hidden Markov model. DNA Res, vol. 3, pp.355-
361,1996); this work describes the GeneHacker program
that was found quite robust in identifying short genes (less
than 300 nt) in cyanobacterial genomes. Yan et al. devel-
oped “Length-Shuffle” gene prediction program, based on
a Z curve representation of DNA sequences, specifically
to address the short gene problem (Bioinformatics, vol.
14, pp. 685-690). EasyGene was developed in 2003 by
Larsen and Krogh, ranking the ORFs by their statistical
significance, thereby reducing substantially the spurious
short gene predictions (BMC Bioinformaticsvol.4, art. 21,
2003). GeneMarkS program was shown to outperform
other existing methods in identifying short genes (< 300
nt) in E. coli genome (Zhu et al., BMC Bioinformatics,
8:97; 2007).
Strangely, and rather surprisingly, this paper has not

included the developments and milestones accomplished
in short gene prediction in the Background/Introduction
section. None of the above frequently used programs was
referenced. The authors have referenced only one paper
on short gene prediction- a recently published work by
Goli and Nair (2012). They say that “Concerning short
prokaryotic gene recognition problems, however, only
Goli and Nair [4] made some research studies”, which is
not correct. It seems like that the authors have not done
the literature survey on prokaryotic gene prediction and
on efforts invested in addressing the short gene predic-
tion problem.

Author’s response: In the revised manuscript, we have
done the literature survey on the prokaryotic gene predic-
tion, especially on the short prokaryotic gene prediction
problem. There is a literature review in the Background
section. Beside Goli and Nair’ work, we reviewed other ap-
proaches including: GeneHacker, GeneMarkS, Metagene,
Orphelia and so on. The experiment results illustrated
that prediction of short genes (less than 200 nt) are be-
yond the detection ability of these tools. Thus, our motiv-
ation is to improve the prediction performance for the
short genes.
One of the challenges in the field is the validation or

evaluation of the prediction methods. The authors men-
tion about 4907 coding and 3736 non-coding sequences
that they used for validation of the proposed method.
Beyond the size (< 400 nt), there is no further descrip-
tion on the fidelity of this dataset for validation.
There is no comparative study with the widely used

prokarkotic gene prediction programs such as GeneMark,
Glimmer, EasyGene and Prodigal. Does the proposed
method outperform these popular programs in predicting
short genes? The validation data could include the vali-
dated short E. coli genes from the EcoGene dataset and
the validated short genes in B. subtilis (Zhu et al., BMC
Bioinformatics, 8:97, 2007; Besemer et al., Nucleic Acids
Res. vol. 29, pp. 2607-2618, 2001). In the absence of a
comparative study, I am just left wondering why should
the researchers use this method when there are already
many robust methods for prediction prokaryotic genes in-
cluding the short genes.

Author’s response: In the revised manuscript, we have
compared our approach with four widely used prokarkotic
gene prediction programs: GeneMarkS, Metagene, Orphelia,
and Heuristic Approachs. The experimental results in-
dicated that our method outperform these popular pro-
grams in predicting short genes. On the very short
genes (<100 nt), it provided sensitivity as high as
83.44% and specificity as high as 92.8%. These values
are two or three times higher than three of the other
methods while Metagene even fails to recognize genes
in this length range. The validation data include the
Gram-negative bacterium E. coli genes and its five re-
lated organisms. To expand the application of our
method, we add Gram-positive bacterium B. subtilis
genes to the experiment dataset, and the prediction
performance is outstanding.
The manuscript is laden with grammatical errors, un-

explained formulas (eqns.1, 2, 3) and notations, and un-
explained or unsubstantiated claims. The authors claim
that “IASPLS has some other advantages, i.e. relying on
the adaptation of such penalty values, not only the unin-
formative features could be removed successfully, but
also the contributions of important features could
be reasonably enhanced” but this has not been demon-
strated. Given a gene, what could be uninformative fea-
tures and what could be informative features within the
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gene and how the proposed method optimizes this infor-
mation to reliable detect the short genes? The authors
should have provided data to support this claim. Similar
kinds of poorly explained or unexplained texts, without
any supporting data, were found at many places throug-
hout the manuscript.

Author’s response: In the revised manuscript, we gave
a clear explanation for the formulas and notations, we
also deleted the unexplained or unsubstantiated claims,
and we invited a native English speaker to modify our
paper. We believed that there were no grammatical er-
rors in this paper.
Quality of written English: Not suitable for publication

unless extensively edited

Reviewer’s report 3: Prof Yuriy Fofanov (nominated by Dr
Janet Siefert): Rice University, United States of America
Reviewer comments:
The manuscript entitled “Recognizing short coding se-

quences of prokaryotic genome using a novel iteratively
adaptive sparse partial least squares algorithm” by Sun
Chen, Chun-ying Zhang and Kai Song has major flaws.
First the manuscript is poorly written and structured so
that it was difficult to read. English need to be improved
for readability and better comprehension.

Author’s response: We adjusted the structure of the
article, and the revised paper has been corrected by a
native English speaker, and we believed it is improved
for readability and better comprehension.
Unfortunately, there is no appropriate overview of the

related and previous work: This overview must be a rea-
sonable description of where the advancement in field is
at present. There are several other papers besides the
paper by Goli and Niar in the gene recondition problem
and these papers should be at least cited and what these
papers have added to the filed.

Author’s response: We have added a literature review
on short prokarkotic gene prediction in the Background
section, which including the papers from 1996 to 2011.
The advancement in this field is Goli and Niar’ work
which achieved a sensitivity of 94.77% and a specificity
of 90.06% on short gene classification. But there is still
room for improvement. Actually, the difficulty on short
gene prediction is focus on the length under 200nt, thus
we gave a research on the very short coding sequences
under 200 nt.
Next, there is no clear explanation of the difference /

novelty of the proposed approach. This is vital to show
the readers what is new ad novel about this work. There
needs to be a serious comparison of your findings with
those from other approaches and show that results from
your approach is better than the results of produced by
other approaches. The statistical significance of the “im-
provement” of the proposed approach is questionable.
Since only few genomes were used in the analysis signifi-
cance may be improved by the analysis of more ge-
nomes. Unfortunately it was difficult to follow your
formulas because not all the variables used in your for-
mulas were described in the text. A much better descrip-
tion and reasoning behind the formulas must be
included. Lastly, several references were presented in
manner that could not be used to identify or even find
them.

Author’s response: In the revised manuscript, we gave
a clear explanation of the difference of the proposed ap-
proach with the original SPLS algorithm. We gave the
details of SPLS algorithm which is helpful for the readers
to understand the improvement we proposed. We also
compared our approach with four widely used prokarkotic
gene prediction programs, and the experimental results
proved that our method outperform the other four pro-
grams.

Quality of written English: Not suitable for publication
unless extensively edited
Amended comments in response to the revision

version:
Report form:
Need to fix some typos. I would also suggest to focus

review on bacteria genes identification.
Quality of written English: Acceptable.

Additional file
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squares: the details of partial least squares and sparse partial least
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squares algorithm. URLs of the websites of four algorithms: GeneMarkS,
HA, Orphelia and Metagene.
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