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Accurate state estimation from uncertain data
and models: an application of data assimilation
to mathematical models of human brain tumors
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Abstract

Background: Data assimilation refers to methods for updating the state vector (initial condition) of a complex
spatiotemporal model (such as a numerical weather model) by combining new observations with one or more
prior forecasts. We consider the potential feasibility of this approach for making short-term (60-day) forecasts of the
growth and spread of a malignant brain cancer (glioblastoma multiforme) in individual patient cases, where the
observations are synthetic magnetic resonance images of a hypothetical tumor.

Results: We apply a modern state estimation algorithm (the Local Ensemble Transform Kalman Filter), previously
developed for numerical weather prediction, to two different mathematical models of glioblastoma, taking into
account likely errors in model parameters and measurement uncertainties in magnetic resonance imaging. The
filter can accurately shadow the growth of a representative synthetic tumor for 360 days (six 60-day forecast/
update cycles) in the presence of a moderate degree of systematic model error and measurement noise.

Conclusions: The mathematical methodology described here may prove useful for other modeling efforts in
biology and oncology. An accurate forecast system for glioblastoma may prove useful in clinical settings for
treatment planning and patient counseling.

Reviewers: This article was reviewed by Anthony Almudevar, Tomas Radivoyevitch, and Kristin Swanson
(nominated by Georg Luebeck).
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1 Background
Mathematical models, typically a system of ordinary or
partial differential equations, can provide considerable
insight into the dynamics of biological systems. For
initial investigations, it suffices to determine whether a
model provides good qualitative agreement with the
dynamical process under study. This paper focuses on
the issue of quantitative prediction in complex spatio-
temporal models of biological processes. In particular,
we address the question of how differences between the
predicted state of a biological system can be reconciled
with noisy measurements to correct the forecast in view
of new information; this process is called data

assimilation. Our overall mathematical approach to data
assimilation is quite general and should be broadly
applicable to many types of biomathematical models. As
an illustration of its potential utility, we consider the
possibility of making clinically useful forecasts, in indivi-
dual patient cases, of the evolution of glioblastoma mul-
tiforme (GBM), the most common (and most
aggressive) type of human brain cancer. We have chosen
GBM because the location and density of the tumor cell
population affect patient symptoms and treatment plan-
ning, and the dynamics evolve on a complex geometry.
However, as we will explain, our data assimilation pro-
cedure does not depend on the details of a given cancer
growth model and should be broadly applicable to many
spatiotemporal models of cancer and other biological
phenomena.
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Our approach is derived from one used in numerical
weather prediction, illustrated schematically in Figure 1.
One begins with a model-generated forecast, often
called the background. The chaotic evolution of the
weather assures that uncertainties in atmospheric initial
conditions grow rapidly with time. To make useful pre-
dictions, the background must be updated frequently
(typically every 6 hours for global models) with noisy
(and sometimes sparse) measurements. The data assimi-
lation procedure updates the background in light of the
new observations to produce an analysis, which, under
suitable assumptions, is the maximum likelihood esti-
mate of the model state vector. The model is restarted
from the analysis to produce a new background forecast,
usually for 6 hours hence in the case of a global weather
model. Data assimilation and model forecasts can be
combined into observing system simulation experiments
to quantify the effect of changes in observation accuracy,
type, location, and frequency on the accuracy of numeri-
cal forecasts. Section 2.3.3 outlines one state-of-the-art
procedure for performing the state update in complex
spatiotemporal models.
Two significant difficulties must be addressed in the

context of GBM. First, many details of the growth of
glioblastoma tumor cells are poorly understood, in con-
trast to the motions of the atmosphere, for which there
are well-established physical models. GBM tumors com-
prise malignant cells with heterogeneous genetic
abnormalities and altered metabolism, cysts, cell debris,
and vasculature. The patterns by which glioblastomas
invade the brain depend on individual growth character-
istics and the cytoarchitecture of the surrounding brain
tissue.
The second problem concerns the interpretation of

magnetic resonance (MR) imaging studies. Magnetic
resonance imaging, typically performed at intervals of

several weeks to months, is the principal means by
which the growth and spread of GBM are assessed.
Patients are injected with a contrast agent to enhance
the visibility of the disruption of the blood-brain barrier.
Figure 2 shows a typical MR scan of a patient with a
newly diagnosed GBM. The enhancing region (of high-
est overall intensity) corresponds to the signal from a
contrast agent in a dense area of tumor blood vessels.
Because these vessels are unusually permeable, the sig-
nal probably also reflects contrast agent that has leaked
into the surrounding brain tissue. GBM tumors are
characterized by profuse abnormal vasculature that is
associated with masses of malignant cells, so areas of
greatest enhancement are associated with regions of
high GBM cell density. Surrounding the central enhan-
cing region is an area of edema (swelling) that also may
show some contrast enhancement due to tumoral influ-
ences on the surrounding brain tissue, which includes
abnormal and permeable tumor vasculature and inva-
sion of tumor cells into normal brain tissue [1].
The quantitative relationship between image pixel

intensity and tumor cell density is a topic of current
investigation. Magnetic resonance images may be manu-
ally “segmented” to identify and select those portions of
the image that correspond to the actual tumor, edema,
etc. Individual variations in brain anatomy, tumor com-
position, and tumor mass effect also lead to variability
in their interpretation, even among expert assessors.
Furthermore, variations in contrast uptake, MR signal,
and other aspects of image generation may arise from
exam to exam. Thus, some ambiguities may occur when
mapping a given set of magnetic resonance images to
the brain atlas associated with the dynamical model.
The interpretation of MR images may be further com-
plicated by treatment: radiation necrosis, for example,
may appear similar to new tumor growth [2].

modelobservations data
assimilation

forecast
(background)

state update
(analysis)

Figure 1 Schematic illustration of the data assimilation procedure.
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The goal of this paper is to establish that, under rea-
sonable assumptions, good quantitative predictions of
GBM growth and spread are possible, as well as esti-
mates of their uncertainty. The discussion is organized
as follows. Section 2.1 provides background on GBM
tumors and selected mathematical models thereof. Sec-
tion 2.2 describes the rationale for ensemble forecast
methods. Section 2.3.3 outlines a modern data assimila-
tion algorithm called the Local Ensemble Transform
Kalman filter. Section 3 describes the results of its appli-
cation in some observing system simulation experi-
ments, using magnetic resonance images for estimates
of the tumor population density with two different mod-
els of the growth dynamics, to establish proof of princi-
ple of their utility for potential clinical application.

2 Methods
2.1 Two mathematical models of glioblastoma
Glioblastoma multiforme (GBM) is the most common
malignant brain tumor. Despite treatment, patient survi-
val is less than 15 months, on average, from initial diag-
nosis [3]. GBM tumors are aggressive, largely resistant
to chemotherapy and radiotherapy [4], and can quickly
invade large and sensitive regions of the brain, making
complete surgical resection of the tumor impossible and
post-surgical recurrence inevitable [5]. Because little
progress has been made against GBM, its biology
remains the subject of intense study.
The simulations in this paper involve two mathemati-

cal models that attempt to capture the gross dynamics
of GBM growth and expansion. Eikenberry et al. [6]
suggested a model of four stochastic differential equa-
tions whose principal dynamics are the diffusive spread
and logistic growth of a proliferating and a migrating set
of tumor cells. Swanson and co-workers [7,8] considered
simpler models of a uniform tumor cell population. In
both cases, the models are simulated on a realistic (but
static) brain geometry in which the diffusion rates differ
between white and gray matter regions.

In the simplest view, the growth of GBM cells is
assumed to be exponential, and their spread is governed
by Fick’s Law, which leads to a model of the form [7]

∂g
∂t

= ∇ · (
D(x)∇g

)
+ αg. (1)

The diffusion rate of GBM cells is faster in white mat-
ter than in gray matter; often D is piecewise constant.
The diffusion coefficients, as well as the growth rate a,
may be approximated from in vitro studies, sequential
MR studies of individual patients, or the Einstein-Stokes
relation [7].
Equation 1 predicts that the tumor cell density can

become unbounded. A potentially more realistic model
is Gompertzian or logistic growth to some local carrying
capacity Tmax; in the latter case, the model becomes [9]

∂g
∂t

= ∇ · (
D(x)∇g

)
+ αg

(
1 − g

Tmax

)
. (2)

Typical values for the parameters in Eq. (2), which we
will call the logistic Swanson model, are reported in
Table 1. Another model, by Eikenberry et al. [6], divides
the cancer cell population into proliferating and migrat-
ing classes and also attempts to capture the degradation
of the extracellular matrix by the invading tumor. In
this paper, we consider a simplified version of the
Eikenberry model, which assumes that there is a net
transition of cells from the proliferating to the migrating
phenotype along the tumor front, gradually degrading
the extracellular matrix (ECM).
The net growth of the proliferating cells is logistic

(this term also incorporates the net transition from the
migrating to the proliferating phenotype as well as cell
death due to crowding). The dependent variables are

g(x, t) = proliferating cell density

m(x, t) = migrating cell density

w(x, t) = extracellular matrix (ECM) density

and the two-phenotype model is expressed as a
coupled set of three partial differential equations, as fol-
lows.

∂g
∂t

= ∇ · (DG(x)∇g)︸ ︷︷ ︸
diffusion

+αg
(
1 − g +m

Tmax

)
︸ ︷︷ ︸
logistic growth

− ∇ · (χ(x)g∇w)︸ ︷︷ ︸
directed migration into ECM

(3)

∂m
∂t

= ∇ · (DM(x)∇m)︸ ︷︷ ︸
diffusion

+ ∇ · (χ(x)g∇w)︸ ︷︷ ︸
directed migration into ECM

(4)

Figure 2 A representative magnetic resonance image of a GBM
patient at initial diagnosis.
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∂w
∂t

= −ρw
(

g +m
θW + g +m

)
︸ ︷︷ ︸

degradation

+αWw(1 − w)︸ ︷︷ ︸
repair

(5)

Table 2 displays the nominal parameter values for the
two-phenotype model, Eqs. (3)-(5). The values used here
differ slightly from those in [6] and were chosen so that
the total tumor cell populations from both the logistic
Swanson model, Eq. (2), and the two-phenotype model
grow at approximately the same rate.
Both sets of equations are integrated using a brain

geometry from the BrainWeb database, developed by
the McConnell Brain Imaging Center of the Montreal
Neurological Institute at McGill University [10]. We use
the discrete anatomical model of a normal brain gener-
ated for McGill’s MR simulator, which consists of a 181
× 217 × 181 isotropic grid of 1 mm3 voxels in Talairach
space [11]. Each voxel is classified as background, cere-
bro-spinal fluid (CSF), gray or white matter, fat, muscle/
skin, skin, skull, or glial matter. To reduce the computa-
tional expense, the equations are integrated over a
representative coronal slice at the center of the 3-
dimensional domain, from which voxels representing
the skull and other non-brain tissue have been removed.
The resulting 2-dimensional domain is a fixed 145 ×
143 grid (the mass effect is not modeled). For simulation
purposes, glial matter is treated as white matter, and the
diffusion coefficients (DG and DM, as appropriate) are
piecewise constant.
The spatial derivatives are approximated by finite dif-

ferences, and the resulting set of ordinary differential
equations is integrated over the 2-dimensional coronal
domain using the second-order (in time) Heun’s method

with a fixed time step (0.1 day-1). Given the discrete nat-
ure of the brain geometry, location-dependent para-
meters (such as the diffusion constants) are taken to be
piecewise constant.
[Although a forward integration method for finite dif-

ference schemes can be unstable, the authors believe
that Heun’s method provides a reasonable compromise
between numerical stability and simplicity of implemen-
tation for testing the state estimation procedure
described here. The robustness of the integration
scheme has been tested by halving, doubling, and quad-
rupling the nominal domain resolution. In all cases, the
90-day tumor population, integrated from a fixed initial
cell distribution, varied by less than 10 percent for suita-
bly small time steps (typically 0.05-0.5 day), which was
judged satisfactory for our purposes here. Implicit sol-
vers require significant effort to implement because the
brain geometry induces complicated no-flux boundary
conditions; nevertheless, implicit solvers may be
required for choices of model parameters that make the
equations stiff.]
Figure 3 shows the evolution of a typical GBM tumor

under the two-phenotype model, Eqs. (3)-(5), for the
nominal parameter values given in Table 2. The initial
condition is prepared by integrating a population of 100
growing and 10 migrating cells in a single 1 mm2 voxel
for 365 days, which under these parameters yields a
starting population of approximately 105 cells covering
about 150 mm2. The equations are integrated over the
indicated 2-dimensional coronal slice for an additional
360 days; snapshots of the tumor cell density at 60-day
intervals are plotted in Figure 3. (The axes show the
spatial extent of the domain in millimeters.)

Table 1 Representative parameters for the logistic Swanson model, Eq.(2), in two dimensions.

Location-independent parameters Meaning value

a maximum glioma growth rate 0.2 day-1

Tmax glioma carrying capacity 10 000 cells mm-2

Location-dependent parameters Meaning White Matter Gray Matter CSF

D(x) diffusion rate (mm2 day-1) 0.0065 0.0013 0.001

Table 2 Nominal values of the parameters for the two-phenotype model, Eqs.(3)-(5), in two dimensions.

Parameter Meaning value

a maximum glioma growth rate 0.025 day-1

Tmax glioma carrying capacity 10 000 cells mm-2

aW maximum ECM recovery rate 0.01 day-1

r maximum ECM remodeling rate 0.02 day-1

θW cell density at half-maximum ECM degradation 100 cells mm-2

Parameter Meaning White Matter White Matter CSF

DG(x) growing cell diffusion rate (mm2 day-1) 0.002 0.0004 0.001

DM(x) migrating cell diffusion rate (mm2 day-1) 0.10 0.02 0.001

c(x) haptotaxis coefficient (mm-1) 0.25 0.05 0
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The bar on the right shows the color coding of cell
density: dark blue (lowest density) to dark red (highest
density). More precisely, the cell population density is
mapped to one of 128 “bins,” each of which corresponds
to a given color. The darkest blue color corresponds to
voxels in which the tumor cell density is between
3

128Tmax and 4
128Tmax, and so on to the darkest red color

where the cell density approaches Tmax. The brain
domain is shown wherever the tumor cell density falls
below 3

128Tmax; this color coding is dark gray for gray
matter, white for white matter, and light gray for CSF.
We presume that the warmer colors correspond
approximately to the enhancing region in an MR scan
and cooler colors to a portion of the visible edema;
tumor cells are present at a nontrivial density
(up to 3

128Tmax) in a region extending 2-4 mm beyond
the periphery of the blue-shaded area.
We have chosen the logistic Swanson and two-pheno-

type models because they are adequate to establish the
potential feasibility of a data assimilation (state estima-
tion) scheme in the face of significant errors in model
parameters and data acquisition. One must integrate
several dozen different initial conditions and parameters
in parallel, which can be done in a reasonable period on
a multicore laptop computer for these particular models.
Both models give plausible simulations of the natural
history of a GBM tumor from initiation to diagnosis,

but the omission of mass effect is a limitation, and we
do not wish to suggest that one provides a better math-
ematical representation of GBM biology than the other.
Interested readers may consult [12] for a survey of
mathematical models of glioma.

2.2 Ensemble forecasting
In a classic 1963 paper [13], Edward Lorenz showed that
a simple model of fluid flow, consisting of three coupled
ordinary differential equations, exhibits what is now
called chaotic behavior. Such a system is sensitive to
small changes in initial conditions: simulations started
from states that initially are close together quickly
diverge. Although trajectories from typical initial condi-
tions (i.e., those that are not fixed points or unstable
periodic orbits) appear to approach the same limit set,
they become uncorrelated after awhile even when the
initial conditions are close together. The implications
for weather forecasting are clear: the atmosphere cannot
be sampled everywhere, all observations are noisy, and
no forecast model is perfect. These factors, with the
chaotic dynamics, imply that there is a finite time hori-
zon past which weather forecasts are no more accurate
than climatological averages.
Even on time scales of a few days or less, uncertainties

in the initial state of the atmosphere may lead to sub-
stantial forecast errors. In a 1965 paper [14], Lorenz
suggested that, instead of running one forecast from a
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Figure 3 The evolution of a typical GBM tumor under the two-phenotype model. The tumor cell density is color-coded as a fraction of the
local carrying capacity for this representative solution of Eqs. (3)-(5) for the nominal parameter values given in Table 2.
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best guess of the initial state, one should run an ensem-
ble of many forecasts, each from a statistically equivalent
estimate of the initial state, to give a Monte Carlo esti-
mate of the forecast uncertainty for a given weather
model. Under appropriate assumptions, the ensemble
mean becomes an empirical maximum-likelihood fore-
cast. By 1992, supercomputers had become sufficiently
powerful to make ensemble forecasting a practical part
of the daily operations at the U.S. and European weather
centers [15].
Figure 4 shows representative ensemble forecasts of

geopotential height contours at 500 hPa (about half of
the mean surface pressure). Each curve shows the result,
from one initial condition on Oct. 12, 2010, of a forecast
obtained by running the weather model for 3 days (top
panels) and 7 days (bottom panels). Roughly speaking,
the maps show the predicted locations where half the
atmosphere’s mass is below 5520 m (left panels) and
5760 m (right panels). (The geopotential, F(z), is the
work needed to raise a unit mass a vertical distance z
from mean sea level and accounts for the variation of
the earth’s gravitational field with latitude and elevation.
The geopotential height is F(z)/g0, where g0 = 9.80665
m s-2 is the global average of gravitational acceleration
at mean sea level. For more details, see Chapter 1 of
[16].) Of greatest interest here is the forecast uncer-
tainty, which varies considerably in space as well as in
time. Because of the chaotic dynamics, the forecast
uncertainty generally is larger at 7 days than at 3 days.
The 5760-m contours (right panels) show considerable

spread over the North Atlantic Ocean at 7 days, corre-
sponding to especially large uncertainties in the forecast
of the 500-hPa geopotential height.
Unless the initial conditions are updated sufficiently

often, numerical weather models produce forecasts that
are only as accurate as an almanac’s. Modern opera-
tional meteorology relies on state estimation procedures
that are based on the Kalman filter, described in Section
2.3.1. The Kalman filter in turn relies on an accurate
characterization of the forecast uncertainty, i.e., the cov-
ariance matrix associated with the model state vector.
Depending on the resolution, a contemporary weather
model may have on the order of 106 to 1010 compo-
nents in its state vector. The associated covariance
matrix is far too large to be stored on a supercomputer,
even if one were able to estimate all the elements.
Methods to reduce the dimensionality of the estimation
problem therefore are essential. A forecast ensemble can
provide an empirical, low-rank approximation of the
forecast covariance matrix, and spatial localization
restricts the scope of the analysis to regions where the
forecast dynamics are most highly correlated. (For
example, during the 6-hour interval over which weather
models are updated, atmospheric conditions over New
York and San Francisco are effectively independent.)
The ensemble approach can be adapted to the cancer

models, Eq. (2) and Eqs. (3)-(5). Although the logistic
terms do not foster chaotic dynamics, the forecast
uncertainty increases with time due to errors in the
initial tumor population and in the model parameters.

(a) (b)

(c) (d)

Figure 4 Representative “spaghetti plots” of ensemble forecasts. Shown are contours of the 500 hPa geopotential height over North
America for forecasts started on Oct. 12, 2010. (a)-(b) Predicted values after 3 days for the 5520-m and 5760-m contours, respectively. (c)-(d)
Predicted values after 7 days for the 5520-m and 5760-m contours, respectively.
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In addition, the dimensionality problem remains: at 1
mm resolution, the spatial domain for the human brain
contains more than 1 million grid points.
The results presented in Sec. 3 are obtained from an

ensemble of 50 model realizations of an underlying
“true” tumor, i.e., a tumor whose dynamics are given
exactly by Eqs. (3)-(5) with the parameter values in
Table 2. For each realization, the growth rate a and car-
rying capacity Tmax are chosen from uniform distribu-
tions centered about the nominal values in Tables 1 and
2. (Once fixed, they remain constant for the duration of
the simulation; Table 3 shows the range of each distri-
bution.) In addition, each realization uses a different
estimate of the initial tumor density within each grid
box (see Sec. 3). The tumor model is integrated to pro-
duce a 60-day forecast of the state of the tumor. At that
time, we imagine that a new MR image becomes avail-
able that provides a noisy observation of the tumor cell
population. The Local Ensemble Transform Kalman Fil-
ter, described next, updates the forecast ensemble using
the MR data. The updated ensemble is used to create a
subsequent 60-day forecast, and so on. The process
stops if it diverges or if the tumor grows so large as to
be fatal.

2.3 Data assimilation
In this section, we briefly describe the rationale and
algorithmic implementation of the Local Ensemble
Transform Kalman Filter (LETKF) for data assimilation.
(See Hunt et al. [17] and Ott et al. [18] for a detailed
mathematical justification.) The basic problem may be
stated informally as follows: Given a forecast model con-
sisting of a coupled system of ordinary differential equa-
tions, u̇ = F(u, t), find the trajectory u(t) that best fits
the observations. In the case of meteorology, the dyna-
mical system F is deterministic, but there is uncertainty
in the initial condition, u(t0). (More generally, one can
regard F as having a stochastic component.) Suppose
that, for i = 1, 2, . . . , n - 1, we have a vector of obser-
vations yi that is related to the system state by yi = Hi(u
(ti)) + εi, where εi is a Gaussian random variable with
mean 0 and covariance matrix Ri. In the scenario envi-
sioned here, the observation operator Hi(u(ti)) is the MR
image that, given a perfect model F in the absence of
noise, would result from a tumor whose density in each

grid box is u(ti) = ui. Data assimilation is an application
of weighted least squares, as we now describe.
2.3.1 The Kalman filter
We motivate our approach by first considering the case
of a linear model, ui = Miui-1, whose observations are a
linear combination of the system state: yi = Hiui + εi.
(We follow the development in [17] here.) A maximum-
likelihood approach suggests that the “most likely” tra-
jectory {ui} is one that minimizes the quadratic cost
function

n−1∑
i=1

(yi − Hiui)
TR−1

i (yi − Hiui). (6)

The Kalman filter provides an iterative method to
compute the minimizer. Suppose that, at time tn-1, we
have a minimizer ūan−1 = ūa(tn−1) with an associated
covariance matrix Pan−1, that is,

n−1∑
i=1

(yi − Hiui)
TR−1

i (yi − Hiui) = (u − ūan−1 )
TP−1

an−1
(u − ūan−1 ). (7)

One can regard ūan−1 and Pan−1 as the mean and covar-
iance, respectively, of a Gaussian probability distribution
that represents the relative likelihood of the possible sys-
tem states given the observations at t1, . . . , tn-1.
Absent further information, the most likely estimate of

the system state at tn is the model forecast,

ubn = Mnuan−1 . (8)

Its associated covariance matrix is

Pbn = MnPan−1M
T
n + Cn. (9)

Under a linear model, a Gaussian distribution of states
at time tn-1 propagates to a Gaussian distribution at tn.
Model errors increase the uncertainty, which can be
approximated by taking Cn as a symmetric positive defi-
nite matrix.
If a new observation vector yn becomes available at tn,

then it can be shown [17] that the relation (7) is satis-
fied if the updated state estimate ūan minimizes

J(u) = (u − ūbn)
TP−1

bn
(u − ūbn) + (yn − Hnu)TR−1

n (yn − Hnu). (10)

Equation (11) weights the forecast and the observa-
tions. roughly speaking, the minimizer is closer to the

Table 3 Parameter intervals for the forecast model, Eq.(2), used to integrate the ensemble solutions in the observing
system simulation experiments.

Experiment 1 Experiment 2 Experiment 3

0.01767 ≤ a ≤ 0.035347 0.0153 ≤ a ≤ 0.0612 0.0153 ≤ a ≤ 0.10

(260 to 520 days) (150 to 600 days) (90 to 600 days)

8000 ≤ Tmax ≤ 12000 8000 ≤ Tmax ≤ 12000 8000 ≤ Tmax ≤ 12000

2.0 × 10-3 ≤ Dw ≤ 2.0 × 10-2 2.0 × 10-4 ≤ Dw ≤ 2.0 × 10-2 2.0 × 10-4 ≤ Dw ≤ 2.0 × 10-1
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quantity with the smaller covariance. The minimizer is

ūan = ūbn + PanH
T
nR

−1
n (yn − Hnūbn) (11)

where

Pan = (I + PbnH
T
nR

−1
n Hn)−1Pbn . (12)

The matrix PanH
T
nR

−1
n , often called the Kalman gain

matrix, describes how to apportion the discrepancies
between the actual and predicted observations to yield
the increment between the forecast ("background”) state,
ūbn, and its update ("analysis”), ūan.
Equation (11) shows that it is possible to compute

updated maximum-likelihood estimates of all compo-
nents of the model state vector, even if they cannot all
be measured, provided that the observations are reason-
ably correlated with the model state. For example, sup-
pose a Kalman filter is applied to the two-phenotype
model, Eqs. (3)-(5), where the state vector u contains
components (g, m, w), corresponding to the growing
and migrating cell densities, plus the relative density of
the ECM, at each point of the domain. Also suppose
that it is possible to make noisy measurements only of
the total GBM cell density at each grid point. The
observation operator, H(u), would then be the predicted
value, g + m, of the total GBM cell density at each grid
point. Equation (11) shows how to ascribe the difference
between the predicted and observed values of total cell
density to each component, (g, m, w), in the update of
the grid point in question (and Eq. (12) estimates their
covariance), even though the densities of the growing
and migrating cells cannot be measured separately.
2.3.2 Variations on the Kalman filter
As mentioned in Section 2.2, one difficulty with a naive
application of the Kalman filter is that the covariance
matrices of the background and analysis states, Pbn and
Pan respectively, are very large. In addition, the models
that we are considering are nonlinear, which implies
that the background (forecast) covariance matrix Pbn

cannot be computed as a simple matrix product.
There are three overall approaches to the latter pro-

blem. One is the extended Kalman filter, which attempts
to estimate Pbn through a suitable integration of a linear-
ized model (i.e., the associated variational equations)
[19]. The principal difficulty with this approach is that it
is highly dependent on the model equations. It is diffi-
cult to linearize a large model, and if the model equa-
tions change, then so does their linearization. Data
assimilation systems based on this approach are tightly
coupled to the forecast model.
A second approach is the unscented Kalman filter, in

which so-called “sigma points” are chosen about the
ensemble mean and integrated with the model to esti-
mate the forecast covariance matrix [20]. The unscented

Kalman filter relies on adequate sampling of the error
probability distribution, which becomes impractical once
the dimension of the model state space is sufficiently
large.
The third approach is an application of the Monte

Carlo method: run an ensemble of forecasts, as
described in Sec. 2.2, to find a low-rank approximation
of the forecast covariance matrix Pbn. If one can find sui-
table sets of initial conditions from which to integrate
the model, then the corresponding forecasts can be used
to parametrize (at least approximately) the distribution
of the forecast error [19]. The ensemble approach is
model independent insofar as it does not rely explicitly
on the model equations; rather, Pbn is estimated empiri-
cally from the forecast state vectors.
The ensemble must be large enough to provide an

adequate sample of the space of forecast uncertainties.
With sufficient sampling, the unscented and ensemble
filters should yield the same results as the extended fil-
ter. However, the model linearization may be difficult to
program, and the integration of the variational equations
is computationally expensive. The Local Ensemble
Transform Kalman Filter, described next, is an ensemble
method. Although it is not a fundamentally new
approach to state estimation, extensive tests with com-
plex atmospheric models have shown that it is computa-
tionally efficient, easily parallelizable, and highly
accurate [21,22].
2.3.3 The Local Ensemble Transform Kalman Filter
When the model (or observation operator) is nonlinear,
Eqs. (10)-(12) must be modified. The background (fore-
cast) covariance matrix Pbn is no longer a simple matrix
product and must be approximated by other means, as
described in Sec. 2.3.2. In addition, the (suitably modi-
fied) cost function J may have no unique minimizer, and
even if one exists, there is no guarantee of optimality, in
the sense of being an unbiased estimator with minimum
variance. Nevertheless, schemes that seek to minimize
cost functions similar to Eq. (10) have proven useful in
operational meteorology (see [15] and references therein
for an extensive bibliography).
The objective of an ensemble scheme is to choose a

set of analysis vectors whose spread about ūan provides a
suitable approximation of the state uncertainty Pbn.
Computational limitations generally restrict the number
of ensemble members, k, to be less than a few hundred–
much less than the number of state variables in most
cases. Nevertheless, if the background ensemble suitably
approximates Pbn, then it is possible to generate an accu-
rate analysis without knowing the model equations expli-
citly. This aspect makes the LETKF (like other ensemble
Kalman filters) a model-independent data assimilation
system. An update of the form (12) accounts for forecast
uncertainties only in the k-dimensional subspace
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spanned by the ensemble. If the underlying dynamical
process has more than k positive Lyapunov exponents,
then an analysis of the form (11) cannot correct forecast
errors outside the span of the ensemble subspace.
The LETKF, therefore, is applicable to models that

exhibit local low dimensionality–that is, models whose
local dynamics over short time intervals can be regarded
as relatively low dimensional but driven by the dynamics
of neighboring regions [23]. Experience suggests that
many geophysical models exhibit this property. The
logistic growth term in the GBM models considered
here also leads to local low dimensionality: once an
initial population of cells invades a given volume of the
brain, it grows to an asymptotic value. The region of
greatest uncertainty in any GBM forecast is the location
of the tumor “front,” as the rate at which GBM cells dif-
fuse into healthy tissue may vary significantly with time
and location [24].
The idea behind the LETKF is to perform a local ana-

lysis that requires the ensemble to capture the forecast
uncertainty in only a portion of the state space. Each
local analysis involves a separate linear combination of
the ensemble solutions over a given local region. In this
way, the dimensionality of the global analysis is much
larger than k. Extensive investigations have shown that
the LETKF is an accurate and computationally efficient
data assimilation system for complex geophysical mod-
els, including the Global Forecast System, which is the
U. S. Weather Service’s operational model [22]; a coastal
estuarine model of New York Harbor [25]; and a dyna-
mical model of the Martian atmosphere [26], among
others.
We briefly outline the implementation of the LETKF

used to obtain the results in Sec. 3. The overall objective
is to use the observations contained within a suitable
local region to update the state estimate of the grid
point in the center. In other words, the LETKF finds the
minimizer of Eq. (10) one grid point at a time within
the subspace spanned by the ensemble solutions. (The
“cookbook” below provides a step-by-step outline.) Fig-
ure 5 illustrates the idea schematically for local regions
consisting of 5 × 5 grid boxes. In each case, the grid
point in the center of the local region (marked in red) is
updated using observations located anywhere under the
pale blue cover. Because the local regions belonging to
adjacent grid points overlap considerably, the set of
observations used to update the grid points tends to
vary relatively slowly as a function of location, assuming
that the observations are sufficiently dense. This prop-
erty helps to assure the continuity of the analysis, as
explained below. Although the mathematics does not
require that the local regions be squares or circles, or
even that they be centered exactly on the grid points, it
is convenient to define them as such in actual

implementations, except possibly near the boundaries of
the model domain. For simplicity of exposition, we refer
to the “center” as the grid point being updated by obser-
vations in the local region. Each grid point is updated
independently, so the computations may be performed
in parallel; in this way, the LETKF may be implemented
efficiently on modern computers.
The following discussion summarizes the considera-

tions and computational procedure that attend to each
local region. The global analysis is computed grid point
by grid point, using suitable local regions around each.
The size of the local regions may be fixed (as in the
results reported here) or may vary by location.
Spatial localization As noted above, the dynamics in a
selected local region often may be regarded as low
dimensional (either chaotic or stochastic) and driven by
the dynamics of neighboring regions. In the case of a
global weather model, a local region is about 1000 km ×
1000 km, which is approximately the spatial extent of a
typical high-or low-pressure system in the midlatitudes.
Insofar as operational weather models are updated four
times daily, this choice roughly corresponds to the
atmospheric region that has the greatest impact on the
weather at a given point during a typical 6-hour period.
Modern atmospheric observing networks are sufficiently
dense that updates for adjacent grid points in regions of
this size use most of the same observations, which fos-
ters continuity in the analysis. The LETKF is relatively
insensitive to choices of ensemble and local region size,
provided that both are within a reasonable range. For
this initial GBM study, the local regions are 7 mm × 7
mm squares. The region coincides with the computa-
tional grid (which has 1-mm spacing). Our choice of 7
× 7 grids comes from an empirical assessment that the
areas of greatest forecast uncertainty are along and near
the edges of the tumor core, that is, near the boundary

Figure 5 Schematic illustration of the LETKF localization
procedure. Observations in each local region (shown in blue) are
used to update the grid point in the center (shown in red).
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of the region with highest contrast on the MR scan (cf.
Figure 2). In the situation described here, the local
region size should be comparable to the spatial correla-
tion length of the tumor dynamics; since the tumor
“front” is of greatest interest, local regions from 5 mm ×
5 mm to 11 mm × 11 mm should suffice. We have used
ensemble sizes of 25 and 50 in our simulations with
roughly comparable results. Larger ensembles tend to
provide better parametrizations of the distribution of
forecast uncertainties; the results described in Sec. 3
have been computed with 50-member ensembles.
Ensemble We assume that, at time tn, a set of back-
ground ensemble forecasts, ui

bn, i = 1, 2, . . . , k is avail-

able. Each ui
bn is a vector containing the full set of

model variables over the entire domain. We denote by
xib the components of ui

bn associated with the model grid
point at the center of the local region. (In Sec. 2.1, we
used x to denote a given spatial location within the
domain of the PDE models. Here xib denotes the model
state at a particular location. In the case of the two-phe-
notype model, Eqs. (3)-(5), xib is the 3-vector (g, m, w)
giving the density of proliferating and migrating cells
and the extracellular matrix at the grid point in
question.)
Suppose that the solution vector at each model grid

point contains m components (e.g., m = 3 in the case of
the two-phenotype model) and that there are ℓ observa-
tions in the local region. Compute the mean, x̄b, of the
ensemble state components xib, i = 1, 2, . . . , k, and the
m × k ensemble perturbation matrix Xb whose ith col-
umn is xib − x̄b.
The LETKF seeks to minimize an objective function

ffo the form (10) within the subspace spanned by the
forecast ensemble. In other words, rather than finding an
estimate of the entire state vector x, we seek a linear
combination of the ensemble forecasts that minimizes
Eq. (10) for the components of x that correspond to a
given local region within the physical grid of the model
and that lie in the ensemble subspace. As a conse-
quence, the minimizer has the form x = x̄b + Xbw, and
the “cookbook” below shows how to calculate w.
One important consideration is that the columns of

Xb, by construction, sum to 0 and therefore do not
form a basis for the subspace spanned by the ensemble
solutions. In particular, the k-vector whose components
are 1 belongs to the null space of Xb, so the rank of the
k × k ensemble covariance matrix Pb = (k − 1)−1XbXT

b is
at most k - 1. However, Xb is one-to-one on its column
space S, so we regard Xb as a linear transformation
from an abstract k-dimensional space S̃ to S and mini-
mize J on S, relative to which Pb has a well defined

inverse. It can be shown that if w ∈ S̃ is Gaussian with
mean 0 and covariance matrix (k - 1)-1I, then
x = x̄b + Xbw is Gaussian with mean x̄b and covariance
matrix Pb [17].
Observations and data selection The observation
operator H need not be linear. Only the components
within the local region are selected for the analysis. Let
hi
b denote the ℓ vector of the components of the obser-

vation operator H(ui
bn
) within the local region. Let yn be

the (global) vector of observations. As with H, only the
components of the observation vector yn that belong to
the local region (Figure 5) are used; denote them by yo.
As with the model state vectors, we let ȳb be the mean
of the vectors hi

b, i = 1, 2, . . . , k and define the ℓ × k

matrix Yb whose ith column is hi
b − ȳb. In what follows,

we also assume that the observation error covariance
matrix R has been truncated to the observations within
the local region.
We assume that H, if it is nonlinear, can be approxi-

mated as H(x̄b + Xbw) ≈ ȳb + Ybw. The goal is to find a
linear combination, w, of the ensemble solutions to
minimize the cost function

J∗(w) = (k − 1)wTw + [yo − ȳb − Ybw]TR−1[yo − ȳb − Ybw], (13)

which is the analogue of Eq. (10) in the subspace
spanned by the spatially localized ensemble solutions
[17]. The first term, (k - 1)wTw, represents the forecast
uncertainty and has a particularly simple form by virtue
of the representation of the ensemble subspace in terms
of the perturbation vectors that form Xb.
The remaining steps are a “cookbook” recipe for com-

puting w and the local analysis ensemble.

1. Compute the k × ℓ matrix C = YTbR
−1. (If the

observations are not independent and R is not diag-
onal, it is computationally more efficient to solve the
system RCT = Yb instead of inverting R.)
2. Compute the k × k symmetric matrix
P̃a = [(k − 1)I/ρ + CYb]−1. (See below for more dis-
cussion of r.)
3. Compute the k × k matrix W̃a = [(k − 1)P̃a]1/2, by
which we mean the symmetric square root. This
choice ensures that W̃a depends continuously on the
elements of P̃a. (Otherwise, small changes in P̃a at
neighboring grid points can lead to very different
analysis ensembles [17,27].)
4. Compute the k-vector w̄a = P̄aC(y0 − ȳb) and add
it to each column of W̃a to form the k × k analysis
weight matrix Wa.
5. Compute the analysis perturbation matrix Xa =
XbWa.
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6. The analysis ensemble, xia, is formed by adding x̄b
to the ith column of Xa, i = 1, 2, . . . , k.

Global analysis ensemble The global analysis ensemble,
ui
an, consists of the collection of local analysis ensembles,

xia, at the center of each local region.
Covariance inflation In principle, the only free para-
meters in the LETKF scheme are the ensemble size, k,
and the size of each local region. In practice, however,
the model is not a perfect representation of the underly-
ing dynamics. As a result, ensemble methods tend to
underestimate the actual background uncertainty, which
causes them to underweight the observations in the ana-
lysis scheme. In severe cases, the filter can diverge. One
ad hoc remedy is to “inflate” the background ensemble
covariance by a tunable parameter. The procedure
described above has the effect of multiplying the back-
ground ensemble perturbations by

√
ρ.

2.4 Observing system simulation experiments
In meteorology, tests of proposed data assimilation sys-
tems are called observing system simulation experiments.
Because the weather is a complex multiscale process,
one hopes to separate the effects of observation density,
location, and error from model error. In a perfect model
simulation, one creates a “truth run” from a fixed initial
condition with the same model that is used to make the
ensemble forecasts. At intervals, synthetic noisy observa-
tions are generated from the “truth.” The goal of the
simulation experiment is to determine how well a fore-
cast ensemble tracks the truth when the synthetic obser-
vations are assimilated using a forecast model that is
identical to the model used for the truth run [21]. Such
experiments can quantify the effect of noise and obser-
vation density and frequency on the accuracy of the
analyses, since there is no model error. (The assimilation
of actual atmospheric observations, of course, provides a
test of the data assimilation system in the presence of
model error. Since the truth is not known, the analysis
quality is assessed using a surrogate, such as the root-
mean-square difference between a 48-hour forecast
started from the ensemble mean and the corresponding
observations.)
In contrast to the usual situation in meteorology,

where most of the governing equations of the atmo-
sphere are well established, the forecast models consid-
ered here are relatively crude approximations of the
underlying dynamics. GBM tumors comprise a heteroge-
neous population of cells, and, although the tumor as a
whole may grow and spread at rates that are reasonably
well described by the nominal parameter values, muta-
tions among the genetically unstable population may

cause the growth and migration rates to change unpre-
dictably from their nominal values.
Furthermore, in a clinical setting, every patient

receives treatment (usually some combination of sur-
gery, radiation, and chemotherapy), whose effects have
not been well characterized in the mathematical models
described here. For these reasons, we use different mod-
els to generate the observations and the forecasts in the
results described below.
2.4.1 Forecast model and ensemble generation
Given the current state of knowledge, errors in any con-
temporary forecast model for GBM are likely to be sig-
nificant, and we wish to establish the efficacy of the data
assimilation scheme under such circumstances. For the
observing system experiments described here, we take as
the “truth” a tumor whose growth dynamics are sup-
posed to be governed exactly by the two-phenotype
model, Eqs. (3)-(5), with the parameter values given in
Table 2. Synthetic observations of the true tumor con-
sist of noisy MR images whose overall intensity is
assumed to vary linearly with cell density. They are
assimilated at regularly spaced intervals to update an
ensemble of initial conditions for which the forecast
model is Eq. (2), the logistic Swanson model. A similar
model has been used to assess the survival times in indi-
vidual GBM patients following surgical resection [9],
and it can be integrated readily for many different sets
of initial conditions on a laptop computer. (We could
just as well have used the logistic Swanson model for
the “truth” tumor and the two-phenotype model as the
forecast model. Qualitatively similar results would
obtain, but the computational expense would be consid-
erably greater.)
The filtering scheme described in Sec. 2.3.3 is applied

to a 50-member forecast ensemble once every 60 days,
and the simulation is continued for 360 days to assess
its accuracy and stability. This process is necessarily lim-
ited in duration, because the tumor eventually grows to
a size that causes fatal complications. No attempt has
been made to assess the effect of treatment, which is a
subject for future investigation.
Our principal focus is the effect of model and observa-

tion uncertainties on the effectiveness of our data assim-
ilation approach. To attempt to capture the
heterogeneity of GBM tumors, we consider an ensemble
of models: each ensemble solution is integrated using
Eq. (2) with a unique set of parameter values as well as
initial conditions. In the results described here, we
choose random values within certain intervals of the
logistic growth rate a, carrying capacity Tmax, and the
diffusion rate D in white matter, which remain fixed for
the duration of the simulation (see Table 3).
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Alternatively, one might allow the parameters to vary
with time, possibly according to a random process with
drift, but this simple setup suffices to demonstrate the
viability of the overall approach.
2.4.2 Generation of synthetic observations
The operator H(x) gives the quantity that would be
observed if the tumor state vector were x. As discussed
in the introduction, many details of the relationship
between tumor cell density and contrast enhancement
are not well characterized, and there is intrinsic variabil-
ity in contrast agent uptake and other aspects of MR
image generation. Hence we assume that H has a ran-
dom component. For our purposes here, H(x) represents
the contrast enhancement (above a baseline level) due to
the presence of tumor cells and that the enhancement
varies linearly with the tumor cell density at each point
of the domain, plus a random value.
The value of H is computed pointwise as follows. Let

uk(x, t) be the tumor cell density for the kth ensemble
member at location x at time t. Let

hk(x) = max
(
0,min

(
1,

uk(x, t)
Tk
max

+ η(x)
))

, (14)

where h(x) is a uniformly distributed random value in
[-0.1, 0.1] and Tk

max is the carrying capacity for the kth
ensemble solution. The value of hk, which is clamped to
the unit interval, is the component of H corresponding
to location x in the brain domain. (The h’s are
independent.)
Equation (14) represents an idealized situation,

because it ignores the mass effect of the tumor and
assumes that there is a one-to-one mapping between
pixels in the generated observation and grid points in
the model domain. A mathematical characterization of
contrast enhancement in individual clinical cases, as
well as the registration errors in the mapping between
the model domain and MR image, are subjects of
ongoing investigation.
2.4.3 Data assimilation and analysis procedure
Each observing system simulation experiment proceeds
as follows. Steps 1 and 2 constitute the initialization
phase.

1. The “truth tumor” is integrated according to the
two-phenotype model, Eqs. (3)-(5), with the para-
meter values given in Table 2, to produce the
sequence of states shown in Figure 3, which are then
used to generate all the observations as described
above.
2. An initial ensemble of 50 solutions of the logistic
Swanson model, Eq. (2), is prepared by choosing an
initial cell density randomly and uniformly from the
interval [50,150] in a single voxel within 3 mm of

that used to start the truth tumor. Each ensemble
solution has a unique set of model parameters that
are chosen randomly and uniformly from the inter-
vals given in Table 3; they remain constant for the
duration of the simulation. Each single-voxel “seed”
is integrated for 365 days and produces an initial
tumor of about 105 to 106 cells. Three sets of obser-
ving system simulation experiments are performed,
using parameters chosen from the intervals listed in
the respective columns of Table 3.
3. After the truth and ensemble solutions are pre-
pared as described in Steps 1 and 2, the reanalysis
phase begins. We assimilate a synthetic MR image
that has been generated from the truth tumor
according to Eq. (14) and the Local Ensemble Trans-
form Kalman Filter is applied as described in Sec.
2.3.3 using a 7 mm × 7 mm local region and a mod-
est covariance inflation factor (r = 0.1). The updated
("analyzed”) ensemble solutions are integrated for 60
days to produce a new background forecast.
4. Step 3 is repeated at t = 60, 120, 180, 240, 300,
and 360 days, for a total of seven assimilation steps
and six forecast cycles.

Three such experiments are conducted with forecast
model parameters chosen randomly and uniformly from
the intervals in Table 3 for the logistic Swanson model,
Eq. (2). In the case of purely logistic growth, g’ = ag(1 -
g/Tmax), one can solve explicitly to find the value of a
for which the time needed for g to increase from 1 per-
cent to 99 percent of Tmax equals a specified value. The
first two lines of Table 3 report those values; for exam-
ple, in Experiment 1, the smaller a yields an interval of
approximately 520 days for the tumor cell density to
increase from 0.01Tmax to 0.99Tmax and the larger value,
about 260 days. The quantity Dw refers to the value of
the diffusion coefficient D(x) in white matter. We take
D(x) to be piecewise constant, and its value in gray mat-
ter is fixed at the nominal value in Table 1. (GBM cells
tend to migrate along white matter tracts [28-30] and
the two-dimensional domain chosen for these simula-
tions contains considerably more white matter than gray
matter.)
Both mathematical models considered in this paper

predict that the cell density at every point in the core of
a GBM tumor eventually reaches the same constant
value, Tmax. Such a situation is biologically suspect (as
Figure 2 suggests) and also causes problems for ensem-
ble Kalman filtering schemes: if all tumors reach the
same density everywhere, then the background covar-
iance matrix approaches zero in local regions in and
near the tumor core. Consequently, the first term in the
objective function, Eq. (10), tends to infinity and the fil-
ter gives no weight to the observations; this situation
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leads to the eventual divergence of the filter. In the
simulations here, we let Tmax be a random parameter
that is fixed for each ensemble solution. Alternatively,
one can let Tmax vary randomly in space. Both choices
prevent the background covariance matrix from becom-
ing too ill-conditioned.

3 Results
The goal of the observing system simulation experi-
ments here is to shadow the “true” tumor, shown in Fig-
ure 3, using synthetic observations and a forecast
ensemble as described in Sec. 2.4. Figure 6 shows the
results of three assimilation experiments following the
final assimilation step at t = 360 days. The first, second,
and third rows correspond, respectively, to Experiments
1, 2, and 3 in Table 3. The left column, labeled “analysis
mean,” shows the ensemble mean after the final analysis
step, 360 days after initialization; it is the pointwise
average of the fraction of the carrying capacity over all
the ensemble members. (The color coding is the same
as in Figure 3.) The right column, labeled “free run,”
shows the corresponding ensemble means after 360 days
when no data assimilation is performed. The middle col-
umn shows the pointwise absolute difference between
the total cell population in the analysis mean and in the
true tumor. At most points, the numerical value of this
pointwise difference is generally a few percent of Tmax,
so it is colored dark to light blue.
Figure 6 shows that the performance of the data

assimilation system degrades gracefully as the extent of
parameter misspecification increases. Even in the worst
case (Experiment 3), where the white-matter diffusion
rate varies by three orders of magnitude and the logistic
growth rate by more than a factor of six in the forecast
model, the final analysis provides a reasonably good
approximation of the core of the “true” tumor (shown at
the bottom right of Figure 3). Although the accuracy of
the forecasts in Experiment 3 is considerably poorer
than in Experiments 1 and 2, the analysis is reasonably
good, but it demonstrates considerable uncertainty
regarding the spatial extent of the lowest-density cell
distribution.
Figure 7 shows the background forecasts during the

last three cycles of Experiment 2 and their correspond-
ing analyses at t = 240, 300, and 360 days, respectively.
The left column shows the mean of the forecast ensem-
ble, which is a 60-day prediction started from the pre-
vious analysis ensemble. (The color coding, which is as
in Figure 3, shows the pointwise mean of the tumor cell
density at each point, averaged over the 50 ensembles.)
The middle column shows the analysis mean, i.e., the
corrected background forecast ensemble after the syn-
thetic data are assimilated at the indicated time. The

third column is a “spaghetti plot” showing, for each
ensemble solution, a contour plot of where the tumor
cell density is one-half the carrying capacity, i.e., 1

2Tmax.
These contours span a 5-6 mm margin, which gives an
indication of the uncertainty in the boundary of the
highest cell density. The forecast extent of lowest cell
density has a greater span, because we have assumed
that the noise in our synthetic MR scans, generated
according to Eq. (14), is larger on a proportional basis
in low-density regions. This assumption reflects our
belief that the boundaries of edematous regions are
harder to resolve than those of the tumor core.
Comparable results, not shown here, are obtained

when the two-phenotype model, Eqs. (3)-(5), is used as
the ensemble forecast model. In this situation, other key
parameters, such as the haptotaxis coefficient c(x) and
the migrating cell diffusion coefficient DM(x), are chosen
from intervals of varying width. The results are also
relatively insensitive to the size of the ensemble (for
example, an ensemble of size 25 works almost as well)
and to the size of the local region (e.g., 5 mm × 5 mm
to 11 mm × 11 mm local regions yield approximately
similar results).

4 Discussion
This preliminary study demonstrates the potential feasi-
bility of ensemble forecasting and data assimilation
methods for short-term prediction of the growth and
spread of malignant brain tumors. Our principal focus is
on the efficacy of a Kalman-type filter for estimating
initial conditions from noisy imaging data. Although the
immediate application is to glioblastoma, the design and
implementation of the Local Ensemble Transform Kal-
man Filter (Sec. 2.3.3) do not depend on the particular
equations of a given mathematical model. Hence, this
forecasting and state update approach may prove useful
in other biomathematical investigations.
Unlike the case in meteorology, there are no first-

principles models for the dynamics of glioblastoma.
Consequently, model error is likely to be a significant
confounding factor in any state estimation scheme for
GBM and similar diseases. We have attempted to simu-
late the effect of model error by using one model of
GBM growth, Eqs. (3)-(5), to generate a “truth tumor”
and another, Eq. (2), for the forecast and update cycle.
We chose Eq. (2) for this purpose because of its ele-
gance and simplicity and because it has been shown to
provide useful predictions of patient survival in clinical
cases [9]. Our state estimation approach, the Local
Ensemble Transform Kalman Filter (LETKF), appears to
be robust and stable, at least for time periods of clinical
relevance, even in the presence of considerable error in
model parameters, therefore, we believe that the LETKF
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warrants careful consideration in future efforts to
synthesize mathematical models and clinical data for
predictive purposes in individual patient cases.
Nevertheless, considerable work remains before our

approach can be seriously considered in clinical settings.
Many challenges are common to all mathematical simu-
lations of cancer [31] and to glioma in particular
[32,33]. We outline a few of them here.

The mathematical models
The preliminary investigation here makes no attempt to
account for the effects of treatment. The parametriza-
tion of any mathematical model of treatment must
account for many variables, including the timing and
dosage of radiation [12,34], chemotherapy [35], systemic
steroids [36], and mass effect [37-39]. Model error.
Mathematical forecast models of glioblastoma (and

other cancers) are likely to suffer significant errors,
which are treated only crudely in the simulations
described here. Improved mathematical characteriza-
tions of forecast model error, including model para-
meter calibration and more accurate quantification of
uncertainties in the state estimate and its covariance in
the presence of systematic errors, is a topic of ongoing
research [40-42].

Magnetic resonance imaging
The correspondence (if any) between tumor cell density
and contrast enhancement in MR images needs to be
established. One must assess the variability in opera-
tional settings for a clinical scan (including but not lim-
ited to magnet strength, pulse sequencing, and the
dosage of contrast agent) and the variability among
patients (for example, the rate of uptake and metabolism
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Figure 6 Results of the observing system simulation experiments after the final assimilation step. The first, second, and third rows show
the results of Experiments 1, 2, and 3, respectively, at t = 360 days using the parameter ranges listed in the respective columns of Table 3. The
left column shows the final ensemble analysis mean, and the middle column, the pointwise absolute difference between the analysis mean and
the “true” tumor. The right column shows the ensemble mean of free runs of the models, i.e., the mean 360-day forecast without data
assimilation.
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of contrast agent). Although a statistical predictor of
glioma grading based on MR imaging has been pro-
posed [43], the authors are unaware of any studies that
attempt to relate cell density to contrast enhancement
in MR images.

Image registration
Besides the problem of determining the initial density of
tumor cells, one needs a geometrical atlas for the
model. This can be done using a standard set of such
atlases, such as the BrainWeb database [10], or one can
attempt to construct an atlas from each individual
patient. There is considerable variability even between
the brains of healthy people. For example, the brains of
men and women differ, on average, in gross total
volume and in the distribution of gray and white matter
[44]. The mass effect of GBM tumors adds to the diffi-
culty. The registration error must be accounted for in

the observation covariance matrices used in the data
assimilation procedure.

Non-Gaussianity of data
Finally, to simplify the mathematics, ensemble Kalman
filtering schemes assume that the errors in the data and
the model are gaussian (or can be adequately approxi-
mated by gaussian distributions). The previous consid-
erations may result in error statistics that deviate
significantly from gaussianity. Future work should char-
acterize the error statistics in clinical cases and adapt
the minimization strategies in the LETKF accordingly.

5 Conclusions
The Local Ensemble Transform Kalman Filter provides
an accurate and computationally efficient way to update
the state vector (initial condition) of a complex spatio-
temporal model with new quantiative measurements. Its
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efficacy relies only on the local low dimensionality of
the underlying model dynamics, not on the equations
themselves, and so provides a flexible state update
scheme even as the models themselves are improved.
An accurate forecast system for glioblastoma may prove
useful in clinical settings for treatment planning and
patient counseling. The model independence of the
LETKF provides a flexible framework for other mathe-
matical modeling efforts in biology and oncology.

Reviewers’ comments
The authors sincerely thank the reviewers for their care-
ful reading of the manuscript and their suggestions for
improvement. In the reports reproduced below, we have
replaced references to page numbers in the review
manuscript with section numbers and have omitted
comments about typographical errors, all of which we
have corrected.

Reviewer’s report 1
Tomas Radivoyevitch, Case Western Reserve University,
USA.
This paper is important because the approach pre-

sented is generally applicable, and because the notion
that states can be observed (i.e. estimated/inferred) even
if they cannot be directly measured, needs to receive
more attention in biology. This is a very well written
paper.
Major compulsory revisions:
One thing the paper could use is a little more clarifi-

cation [in Sec. 2.3] regarding how the LETKF is model
independent. Specifically, is it that the Kalman gain in
Eq. (10) has been replaced by a tuned asymptotic obser-
ver matrix that is now merely tuned for algorithm con-
vergence kinetics and thus independent of the model?
Or, in the simple case of a linear model, is it that the
background state ub is somehow no longer Mubn−1 i.e.,
somehow now independent of M? It needs to be made
clear whether “model independence” means everything
is 100% data driven, or whether it means that all possi-
ble underlying nonlinear models are reduced to linear
models, so it matters not matter what the true underly-
ing nonlinear model is (in which case one might argue
that the method depends on the linear model that it is
reduced to, and thus is not model independent). In the
paragraph just before Sec. 2.3, regarding uniform distri-
butions centered about nominal values in Tables 1 and
2, please state the range (lower and upper limits) of the
uniform distribution used. This should also be done just
before Sec. 2.4.2.
Authors’ response: We have attempted to clarify this

point by adding a new subsection (Sec. 2.3.2 in this ver-
sion of the paper), which motivates the various
approaches to Kalman filtering for nonlinear models.

The LETKF, like all ensemble approaches, does not rely
on a statically tuned model covariance matrix. Instead,
the background covariance matrix, Pbn, is estimated
empirically from the forecast ensemble. Equally impor-
tantly, the LETKF also estimates the covariance of the
updated state vector in light of the new observations at
each step. The variational equations of the model are
not needed, and in this respect, the LETKF is a model-
independent approach. Our methodology requires that
the background and analysis perturbations provide a
reasonable local linearization of the dynamical model
and observation operator, as described in the discussion
in Sec. 2.3.3 leading to Eq. (13). We have added refer-
ences to Table 3, which provides the range of parameter
values used in the simulations, at the appropriate points
in Sec. 2.2 and Sec. 2.4.1.

Reviewer’s report 2
Kristin Swanson, University of Washington, USA (nomi-
nated by Georg Luebeck, Fred Hutchinson Cancer
Research Center, USA).
This paper illustrates how one might use an estab-

lished method of data assimilation, the Local Ensemble
Transform Kalman Filter, to update the state vector of a
system given new data when modeling glioblastomas.
This is done by presenting two different models for glio-
blastoma, using one to generate a “truth” with which to
update the predictions of the other. Since synthetic data
is used, this is clearly a proof of concept and there are
many pitfalls this method may incur when attempting to
apply this technique clinically. The authors do mention
at least some of these. In the field of glioblastoma mod-
eling this is certainly a new technique and worth consid-
ering. Though, its power would be increased if
combined with a technique for patient specific model
calibration as well. In general, the paper is well written
and presented. There are just a few comments and con-
cerns we have that should be addressed.
Comments:

1. While it is not the goal of the paper to assess
assumptions of the models used, it should be noted
that there is actually a neglible amount of extracellu-
lar matrix in the brain.
Authors’ response: Although the brain contains little
physically static tissue matrix compared to the other
organs in the body, there is still an extracellular
matrix that mediates the behavior of cells within the
brain and becomes active in states of disease. For
example, the brain ECM tends to resist invasion by
metastatic tumors [45]. The disruption of the brain
ECM occurs in various neurodegenerative diseases
[46] and appears to be reorganized in GBM tumors
[47]. In any case, the model (3)-(5) makes no
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assumption about a particular physical or chemical
form of the brain ECM, which is still in the early
stages of characterization. The model simply
assumes that there is a generalized barrier that is
degraded near the tumor front and promotes inva-
sion of tumor cells. We do not assert that the two-
phenotype model is a “better” model of GBM than
the one-phenotype model; it is used merely as a
proxy for a “true” tumor whose internal dynamics
are more complex than those represented in a fore-
cast model.

Concerns:

1. Section 2.1: In the vast majority of the work done
by Swanson et al., the value of D in the CSF is taken
to be 0. Admittedly, this is not mentioned in the
2003 paper or in the 2008 paper, but neither is the
value of 0.001 listed. It is not physical for the tumor
to grow relative to which PB has a well defined
inverse. doubtfully change the proof of concept pre-
sented, it should be remarked upon and kept in
mind for future use.
Authors’ response: We appreciate this clarification.
Although tumor cells do not proliferate in the CSF,
it seems probable that they diffuse into the CSF at a
nonzero rate, hence, a small value for D(x) seemed
more plausible to us than a no-flux condition. We
agree that the precise value of D(x) within the CSF,
as long as it is small, is not likely to significantly
affect the dynamics of either model considered here.
2. According to Table 2 and Table 3, the values of
Dg, Dm, and D in the CSF regions are all the same
value. Thus, the comment in the paragraph introdu-
cing the two-phenotype model regarding their rela-
tive values seems incorrect.
Authors’ response: As mentioned above, we chose small
values of these coefficients to reflect a nonzero rate of
diffusion into the CSF. The rates are identical for both
cell phenotypes because, for the moment, we have no
reason to believe that they should be significantly dif-
ferent. In both models, the cell diffusion rates are taken
to be greater in white matter than in gray matter.
3. In the last paragraph of Sec. 2.3.1 it is said that it
is shown in Sec. 3 that “it is possible to estimate the
densities of both the growing and migrating cell
populations. . .” However, in Sec. 3 it is only men-
tioned that it can be done, but never shown. This
should either be added as an additional full example
or the comment should be modified.
Authors’ response: We have added a paragraph of
explanation regarding this point at the end of Sec.
2.3.1.

4. Figure 5 would better illustrate the method of
localization if a third box were added with the center
grid point within one of the other regions. That is, it
would better illustrate how every grid point is asso-
ciated with its own local region if it was illustrated
that the “primary” point can be within another local
region.
Authors’ response: We thank Dr. Swanson for this
suggestion for improvement, which has been incor-
porated into Figure 5 (and its caption).
5. In the Spatial Localization paragraph of Sec. 2.3.2
[now Sec. 2.3.3], it is mentioned LETKF is relatively
insensitive to ensemble and local region size pro-
vided they are within a reasonable range. Please pro-
vide the approximate ranges you tested to give more
intuition as to just how insensitive they are.
Authors’ response: We have included more details on
this point in the discussion in Sec. 2.3.3, which
replaces Sec. 2.3.2 in the original manuscript.
6. In the Ensemble paragraph of Sec. 2.3.2 [now Sec.
2.3.3], an example is given for xib as a 4 vector
including the a variable for chemorepellent. Such a
variable was never introduced in Eqs. (3)-(5). Also,
this is inconsistent with the next sentence saying, e.
g., m = 3. It seems the variable c should be removed.
Authors’ response: We have made this correction.
7. In the observation and data paragraph of Section
2.3.2 more intuition should be given to the first
term of the objective function. It is likely a regulari-
zation, but an explicit description should be pro-
vided. Also, more intuition for what the “cookbook”
is doing would be good. It seems like it should be
finding a zero of the derivative of the objective func-
tion, but the steps do not give an immediate feel for
that.
Authors’ response: We thank Dr. Swanson for this
helpful suggestion and have added a few paragraphs
of explanation about this matter in Sec. 2.3.3.
8. Regarding the comments in the final paragraph
before the results section about Tmax. The situation
that the cell density is uniform within the core of
the tumor is indeed biologically suspect. But taking
Tmax as spatially variable or as a random parameter
does not seem to be the best way to combat this. In
fact, those solutions also seem biologically suspect
since it indicates the maximum cells that can occupy
a region. A better solution would be to include cell
death in the model and allow for a necrotic core
(what is actually seen in Figure 2).
Authors’ response: GBM tumors are a heterogeneous
group of neoplasms, not all of which have a necrotic
core. The mottled appearance in Figure 2 may
reflect differential uptake of contrast agent within
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the tumor vasculature, areas of cysts and hemor-
rhage, and regions of viable as well as necrotic tis-
sue. The distinguishing characteristic of glioblastoma
tumors upon microscopic examination is multiple
necrotic foci surrounded by so-called pseudopalisad-
ing cells [48]. Neither mathematical model discussed
here captures this behavior.
9. Figure 6. An improvement to the image would be
to add an additional column showing the difference
between the “truth” and the analysis mean in some
way, perhaps by showing the 0.5Tmax contours from
each on the same graphic. This would help in your
claim of accuracy, as now you are appealing to the
readers extremely rough “eye-ball” norm for saying
the mean (shown in one figure) is accurate against
the truth (shown in another figure).
Authors’ response: We have revised Figure 6 so that
the central column shows the absolute pointwise dif-
ference between the total cell densities between the
“true” tumor and the analysis mean. The color cod-
ing is on the same scale as the other columns.
10. Regarding the discussion. There have been many
attempts at models of various treatment modalities
and these should be mentioned.
Authors’ response: We have revised the discussion
and included additional references on this topic.
11. Again regarding the discussion. Why should a
patient always be registered to an atlas? Ultimately,
that would take away from “patient-specific” infor-
mation. Why not generate meshes from the indivi-
dual patient’s images? Of course, these images would
need to be registered to each other, but it does not
seem that computation on the atlas geometry would
be or should be considered optimal.
Authors’ response: These questions will be the focus
of future research efforts.
12. It might be informative to include a small discus-
sion of how this differs from parameter calibration
and could be complemented with parameter calibra-
tion: i.e., as the parameters will vary drastically from
patient to patient, to reduce the uncertainty in the
prediction, a calibration would be useful to reduce
the range of values the LETKF would sample from.
Authors’ response: Parameter calibration is an essen-
tial part of model tuning and improvement. As far
as the LETKF is concerned, the distinction between
model parameters and initial conditions is arbitrary:
one can augment the state vector with components
that represent the model parameters and estimate
the augmented vector using the LETKF [40]. We
have not done so in this investigation, because
(among other things) the models we consider do not
capture the effects of treatment, which may select
for different subpopulations of tumor cells, affect the

patient’s immune response, and alter the dynamics
of the original tumor.

Reviewer’s report 3
Anthony Almudevar, University of Rochester, USA.
The authors apply Kalman filter methodology to the

problem of spatio-temporal modeling of brain cancer
growth based on sequences of MRI images. A number
of well-known models are considered, the one selected
for demonstration models assumes logistic tumor
growth (there are one- and two- phenotype models
involving proliferating cell density, or proliferating and
migrating cell density). A main theme of the article is
an analogy with weather forecasting models, and an
adaption of methodology successfully used in that field
to the current problem. As has been well established,
such forecasting models are very sensitive to small per-
turbations of initial conditions (i.e., are chaotic). One
technique for stabilizing predictions is to take an aver-
age over models using slightly varying initial states and
parameters. This procedure, coupled with data assimila-
tion (updating initial conditions with new data) is incor-
porated into what is referred to in the literature as the
local ensemble transform Kalman filter (LETKF). The
paper is interesting, well motivated and very well writ-
ten. The models and application are clearly described
with sufficient detail, and I believe would be of interest
to readers of Biology Direct. I have three concerns.

The authors point out that the cancer growth model
“does not foster chaotic dynamics” (Section 2.2).
This being the case, I think it would be important to
discuss whether any other technique would accom-
plish the same goals set out in the article. The
ensemble method seems to resemble a computa-
tional Bayesian approach, which might be naturally
defined given the underlying statistical model. The
authors might consider a brief section in which
alternative approaches are compared. It would also
be good to summarize in the same section how the
problem is characterized by the theory of dynamic
systems or numerical analysis, that is, why techni-
ques associated with chaotic systems are needed.
These points are raised at various places in the
paper, but it might be better to have a single subsec-
tion summarizing the justification for this choice.
Authors’ response: Dr. Almudevar’s points are well
taken, and we have added a new section, 2.3.2, that
attempts to provide a brief outline of some possible
approaches to state estimation without greatly
lengthening the present paper. In addition, we have
amplified the discussion of local low dimensionality
in Sec. 2.3.3 to explain why the efficacy of the
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LETKF can be expected in the context considered
here.
The methodology is tested on data simulated from
a specified model, assumed perfectly known (Table
2). Three implementations of LETKF are applied,
differentiated by the ensemble definitions. Although
one is noticeably less accurate, all three are viable,
and reasonably consistent (Figure 6). The predic-
tions are compared to a “free run” (column 3, Fig-
ure 6), computed without the data-assimilation
component, but still using ensemble means. Here,
there is considerably more variation in the predic-
tions. Thus, the efficacy of the data-assimilation
but not the ensemble-mean component of the
method is demonstrated.
In the numerical demonstration, the true [tumor] is
generated using the two-phenotype model, but the
one-phenotype model is used in the forecast. The
authors write “(We could just as well have used the
logistic Swanson model [one-phenotype model] for
the ‘truth’ tumor and the two-phenotype model as
the forecast model. Qualitatively similar results
would obtain, but the computational expense
would be considerably greater)” [Sec. 2.4.1], and
later write “Comparable results, not shown here,
are obtained when the two-phenotype model, Eqs.
(3)-(5), is used as the ensemble forecast model”
[end of Sec. 3]. What is the rationale for not using
the same model as true and forecast model, say,
the one- and two- phenotype model demonstrated
separately?
Authors’ response: It is perfectly reasonable to use
the same model to generate both the forecasts and
the synthetic observations, particularly when testing
a data assimilation system. The first author did just
this in the context of the Global Forecast System
weather model (Ref. [21] provides more details and
rationale). Although we have not reported the
results here, the LETKF gives excellent agreement
between the true and shadowed tumors when the
same model is used for both observations and fore-
casts. However, such a result does not demonstrate
the potential utility of a data assimilation system in
the context of cancer, where model error is likely to
be substantial. This is our motivation for using two
different models. No choice of forecast model para-
meters can exactly match the “true” tumor, but the
data assimilation system with one-phenotype model,
Eq. (2), nevertheless provides good forecasts in the
presence of a moderate degree of error and uncer-
tainty in the model parameters.

List of abbreviations used
CSF: cerebrospinal fluid; ECM: extracellular matrix; GBM: glioblastoma
multiforme; LETKF: Local Ensemble Transform Kalman Filter; MR: magnetic
resonance,

Acknowledgements
Portions of this work were funded by the Barrow Neurological Institute
Women’s Foundation and by funds from the Newsome Family Endowed
Chair of Neurosurgery Research held by MCP. JM was supported in part by
an Achievement Reward for College Scientists Scholarship. YK gratefully
acknowledges support from National Science Foundation grants DMS-
0436341 and DMS-0920744.

Author details
1School of Mathematical & Statistical Sciences, Arizona State University,
Tempe, AZ 85287-1804 USA. 2Barrow Neurological Institute, St. Joseph’s
Hospital and Medical Center, 350 W. Thomas Road, Phoenix, AZ 85013 USA.

Authors’ contributions
EJK planned the research and implemented the parallel computations on
which the reported results are based. YK directed the development and
parametrization of the two-phenotype mathematical model. JM carried out
initial simulations of the mathematical models and the data assimilation
algorithm. NZM and NLM made substantial contributions to the acquisition,
analysis, and interpretation of magnetic resonance image data of previous
patient cases and assisted with the literature review. MCP contributed to the
project conception and design, conducted much of the literature review,
and revised and reviewed the sections on glioblastoma biology. All authors
read and approved the final manuscript.

Authors’ information
EJK is Professor of Mathematics at Arizona State University. His current
research includes data assimilation in weather and climate models as part of
the Mathematics and Climate Research Network, funded by the National
Science Foundation (DMS-0940314).
YK is Professor of Mathematics at Arizona State University. His research
interests include mathematical models of tumor growth and management,
as well as stiochiometry-based population models and their implications. He
is an editor-in-chief of the journal Mathematical Biosciences and Engineering.
JM is a Ph.D. candidate in applied mathematics in the School of
Mathematical and Statistical Sciences at Arizona State University.
NZM and NLM are neurosurgery fellows at the Barrow Neurological Institute.
MCP holds the Newsome Chair for Neurosurgery Research and directs the
Neurosurgery Research Laboratory at the Barrow Neurological Institute in
Phoenix, AZ.

Competing interests
The authors declare that they have no competing interests.

Received: 4 July 2011 Accepted: 21 December 2011
Published: 21 December 2011

References
1. Gossman A, Helbich TH, Kuriyama N, Ostrowitzki S, Roberts TP, Shames DM,

van Bruggen N, Wendland MF, Israel MA, Brasch RC: Dynamic contrast-
enhanced magnetic resonance imaging as a surrogate marker of tumor
response to anti-angiogenic therapy in a xenograft model of
glioblastoma multiforme. J Magn Reson Imaging 2002, 15:233-240.

2. Rijpkema M, Kaanders JH, Joosten FB, van der Kogel AJ, Heerschap A:
Method for quantitative mapping of dynamic MRI contrast agent uptake
in human tumors. J Magn Reson Imaging 2002, 14:457-463.

3. Norden AD, Wen PY: Glioma therapy in adults. Neurologist 2006,
12:;279-292.

4. Amberger VR, Hensel T, Ogata N, Schwab ME: Spreading and migration of
human glioma and rat C6 cells on central nervous system myelin in
vitro is correlated with tumor malignancy and involves a
metalloproteolytic activity. Cancer Res 1998, 58:149-158.

5. Demuth T, Berens ME: Molecular mechanisms of glioma cell migration
and invasion. J Neurooncol 2004, 70:217-228.

Kostelich et al. Biology Direct 2011, 6:64
http://www.biology-direct.com/content/6/1/64

Page 19 of 20

http://www.ncbi.nlm.nih.gov/pubmed/11891967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11891967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11891967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11891967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17122732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9426071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9426071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9426071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9426071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674479?dopt=Abstract


6. Eikenberry SE, Sankar T, Preul MC, Kostelich EJ, Thalhauser CJ, Kuang Y:
Virtual glioblastoma: growth, migration and treatment in a three-
dimensional mathematical model. Cell Prolif 2009, 42:511-528.

7. Swanson KR, Alvord EC Jr, Murray JD: A quantitative model of differential
motility of gliomas in white and grey matter. Cell Prolif 2000, 33:317-329.

8. Swanson KR, C B, Murray JD, Alvord EC Jr: Virtual and real brain tumors:
using mathematical modeling to quantify glioma growth and invasion. J
Neurol Sci 2003, 216:1-10.

9. Swanson KR, Rostomily RC, Alvord EC Jr: A mathematical modeling tool
for predicting survival of individual patients following resection of
glioblastoma: A proof of principle. Brit J Cancer 2008, 98:113-119.

10. BrainWeb: Simulated Brain Database. [http://www.bic.mni.mcgill.ca/
brainweb].

11. Talairach J, Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D
Proportional System: An Approach to Cerebral Imaging New York: Thieme
Medical Publishers; 1988.

12. Harpold HLP, Alvord EC Jr, R SK: Evolution of mathematical modeling of
glioma proliferation and invasion. J Neuropathol Exp Neurol 2007, 66:1-9.

13. Lorenz EN: Deterministic non-periodic flow. J Atmos Sci 1963, 20:130-141.
14. Lorenz EN: A study of the predictability of a 28-variable atmospheric

model. Tellus 1965, 17:321-333.
15. Kalnay E: Atmospheric Modeling, Data Assimilation, and Predictability

Cambridge, UK: Cambridge University Press; 2003.
16. Horton JR: An Introduction to Dynamic Meteorology, 4th ed Amsterdam:

Elsevier Academic Press; 2004.
17. Hunt BR, Kostelich EJ, Szunyogh I: Efficient data assimilation for

spatiotemporal chaos: A local ensemble transform Kalman filter. Physica
D 2007, 230:112-126.

18. Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E,
Patil DJ, Yorke JA: A local ensemble Kalman filter for atmospheric data
assimilation. Tellus A 2004, 56:415-428.

19. Evensen G: Data Assimilation: The Ensemble Kalman Filter Berlin: Springer-
Verlag; 2007.

20. Julier SJ, Uhlmann JK, Durrant-Whyte HF: A new approach for filtering
nonlinear systems. Proc of the American Control Conference 1995,
3:1628-1632, IEEE.

21. Szunyogh I, Kostelich EJ, Gyarmati G, Patil DJ, Hunt BR, Kalnay E, Ott E,
Yorke JA: Assessing a local ensemble Kalman filter: Perfect model
experiments with the NCEP global model. Tellus A 2005, 57:528-545.

22. Szunyogh I, Kostelich EJ, Gyarmati G, Kalnay E, Hunt BR, Ott E, Satterfield E,
Yorke JA: A local ensemble Kalman filter data assimilation system for the
NCEP global model. Tellus A 2008, 60:113-130.

23. Patil DJ, Hunt BR, Kalnay E, Yorke JA, Ott E: Local low dimensionality of
atmospheric dynamics. Phys Rev Lett 2001, 86:5878-5881.

24. Pérez-García VM, Calvo GF, Belmonte-Beitia J, Diego D, Pérez-Romasanta L:
Bright solitary waves in malignant gliomas. Phys Rev E 2011, 84:021921.

25. Hoffman RN, Ponte RM, Kostelich EJ, Blumberg A, Szunyogh I,
Vinogradov SV, Henderson JM: A simulation study using a local ensemble
transform Kalman filter for data assimilation in New York Harbor. J
Atmos Ocean Tech 2008, 25:1638-1656.

26. Hoffman MJ, Greybush SJ, Wilson RJ, Gyarmati G, Hoffman RN, Kalnay E,
Ide K, Kostelich EJ, Miyoshi T, Szunyogh I: An ensemble Kalman filter data
assimilation system for the Martian atmosphere: Implementation and
simulation experiments. Icarus 2010, 209:470-481.

27. Wang X, Bishop CH, Julier SJ: Which is better, an ensemble of positive-
negative pairs or a centered spherical simplex ensemble? Mon Wea Rev
2004, 132:1590-1605.

28. Beliën ATJ, Paganetti PA, Schwab ME: Membrane-type 1 matrix
metalloprotease (MT1-MMP) enables invasive migration of glioma cells
in central nervous system white matter. J Cell Biol 1999, 144:373-384.

29. Beadle C, Assanah MC, Monzo P, Vallee R, Rosenfeld SS, Canoli P: The role
of myosin II in glioma invasion of the brain. Mol Biol Cell 2008,
19:3357-3368.

30. Montana V, Sontheimer H: Bradykinin promotes the chemotactic invasion
of primary brain tumor. J Neurosci 2011, 31:4858-4867.

31. Edelman LB, Eddy JA, Price ND: In silico models of cancer. WIREs Syst Biol
Med 2010, 2:438-459.

32. Deisboeck TS, Zhang L, Yoon J, Costa J: In silico cancer modeling: Is it
ready for prime time? Nat Rev Clin Oncol 2009, 6:34-42.

33. Bearer EL, Lowengrub JS, Frieboes HB, Chuang YL, Jin F, Mand
Ferrari MSWise, Agus DB, Cristini V: Multiparameter computational
modeling of tumor invasion. Cancer Res 2009, 69:4493-4501.

34. Tsai MH, Cook JA, Chandramouli CV, DeGraff W, Yan H, Zhao S,
Coleman CN, Mitchell JB, Chuang EY: Gene expression profiling of breast,
prostate, and glioma cells following single versus fractionated doses of
radiation. Cancer Res 2007, 67:3845-3852.

35. Tracqui P, Cruywagen GC, Woodward DE, Bartoo GT, Murray JD, Alvord ECJ:
A mathematical model of glioma growth: the effect of chemotherapy
on spatio-temporal growth. Cell Prolif 1995, 28:17-31.

36. Piette C, Deprez M, Roger T, Noël A, Foidart JM, Munaut C: The
dexamethasone-induced inhibition of proliferation, migration, and
invasion in glioma cell lines is antagonized by macrophage migration
inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors. J
Biol Chem 2009, 284:32483-32492.

37. Roniotis A, Marias K, Sakkalis V, Zervakis M: Diffusive modeling of glioma
evolution: A review. J Biomed Sci Engr 2010, 3:501-508.

38. Hogea C, Davatzikos C, Biros G: Modeling glioma growth and mass effect
in 3D MR images of the brain. Med Image Comput Comput Assist Interv
2007, 10:642-650.

39. Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandian G,
Ayache N: Realistic simulation of the 3d growth of brain tumors in MR
images coupling diffusion with biomechanical deformation. IEEE Trans
Med Imaging 2005, 24:1334-1346.

40. Baek SJ, Hunt BR, Kalnay E, Ott E, Szunyogh I: Local ensemble Kalman
filtering in the presence of model bias. Tellus A 2006, 58:293-306.

41. Zupanski D, Zupanski M: Model error estimation employing an ensemble
data assimilation approach. Mon Wea Rev 2006, 134:1337-1354.

42. Orrell D: Ensemble forecasting in a system with model error. J Atmos Sci
2005, 62:1652-1659.

43. Emblem KE, Zoellner FG, Tennoe B, Nedregaard B, Nome T, Due-
Tonnesson P, Hald JK, Schreie D, Bjornerud A: Predictive modeling in
glioma grading from MR perfusion images using support vector
machines. Magn Reson Med 2008, 60:945-952.

44. Vannucci RC, Barron TF, Lerro D, Antón SC, Vannucii SJ: Craniometric
measures during development using MRI. Neuroimage 2011,
56:1855-1864.

45. Ruoslahti E: Brain extracellular matrix. Glycobiology 1996, 6:489-492.
46. Bonneh-Barkay D, Wiley CA: Brain extracellular matrix in

neurodegeneration. Brain Pathol 2009, 19:573-585.
47. Bauer R, Ratzinger S, Wales L, Bosserhoff A, Senner V, Grifka J, Grässel S:

Inhibition of collagen XVI expression reduces glioma cell invasiveness.
Cell Physiol Biochem 2011, 27:217-226.

48. Rong Y, Durden DL, Van Meir EG, Brat DJ: “Pseudopalisading” necrosis in
glioblastoma: A familiar morphologic feature that links vascular
pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 2006,
65:529-539.

doi:10.1186/1745-6150-6-64
Cite this article as: Kostelich et al.: Accurate state estimation from
uncertain data and models: an application of data assimilation to
mathematical models of human brain tumors. Biology Direct 2011 6:64.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kostelich et al. Biology Direct 2011, 6:64
http://www.biology-direct.com/content/6/1/64

Page 20 of 20

http://www.ncbi.nlm.nih.gov/pubmed/19489983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19489983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11063134?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11063134?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14607296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14607296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059395?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18059395?dopt=Abstract
http://www.bic.mni.mcgill.ca/brainweb
http://www.bic.mni.mcgill.ca/brainweb
http://www.ncbi.nlm.nih.gov/pubmed/17204931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17204931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11415384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11415384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9922462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9922462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9922462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18495866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18495866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21451024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21451024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19366801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19366801?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17440099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17440099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17440099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7833383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7833383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759012?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18051113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18051113?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16229419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16229419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18816815?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21439387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21439387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8877368?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18662234?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21471710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783163?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions
	Reviewers

	1 Background
	2 Methods
	2.1 Two mathematical models of glioblastoma
	2.2 Ensemble forecasting
	2.3 Data assimilation
	2.3.1 The Kalman filter
	2.3.2 Variations on the Kalman filter
	2.3.3 The Local Ensemble Transform Kalman Filter

	2.4 Observing system simulation experiments
	2.4.1 Forecast model and ensemble generation
	2.4.2 Generation of synthetic observations
	2.4.3 Data assimilation and analysis procedure


	3 Results
	4 Discussion
	The mathematical models
	Magnetic resonance imaging
	Image registration
	Non-Gaussianity of data

	5 Conclusions
	Reviewers’ comments
	Reviewer’s report 1
	Reviewer’s report 2
	Reviewer’s report 3

	Acknowledgements
	Author details
	Authors' contributions
	Authors' information
	Competing interests
	References

