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Abstract

Background: The Hill coefficient characterizes the extent to which an enzyme exhibits
positive or negative cooperativity, but it provides no information regarding the mechanism of
cooperativity. In contrast, models based on the equilibrium concept of mass action can suggest
mechanisms of cooperativity, but there are often many such models and often many with too
many parameters.

Results: Mass action models of tetrameric human thymidine kinase 1 (TK1) activity data were
formed as pairs of plausible hypotheses that per site activities and binary dissociation constants are
equal within contiguous stretches of the number of substrates bound. Of these, six 3-parameter
models were fitted to 5 different datasets. Akaike’s Information Criterion was then used to form
model probability weighted averages. The literature average of the 5 model averages was K = (0.85,
0.69, 0.65, 0.51) μM and k = (3.3, 3.9, 4.1, 4.1) sec-1 where K and k are per-site binary dissociation
constants and activities indexed by the number of substrates bound to the tetrameric enzyme.

Conclusion: The TK1 model presented supports both K and k positive cooperativity. Three-
parameter mass action models can and should replace the 3-parameter Hill model.

Reviewers: This article was reviewed by Philip Hahnfeldt, Fangping Mu (nominated by William
Hlavacek) and Rainer Sachs.

Background
The Hill model [1] characterizes cooperativity with a
single number, but it cannot discriminate cooperativity
mediated by enzyme activity changes versus substrate
binding affinity changes. In contrast, models based on
the equilibrium concept of mass action (Eqs. 2-4 below)
accomplish this, but to be used, methods that deal with
multiple models and models that are over-parameterized
[2] need to be developed.

This paper yields a literature model of tetrameric human
thymidine kinase 1 (TK1) activity data [3-7] that could

be used in network models of dNTP supply [8]. TK1 is
important because it rate-limits the absorption of
thymidine and analogs such as the cancer imaging
marker 3’-18 F-fluoro-3’-deoxy-fluorothymidine (FLT)
[9,10].

Results
Hill Analyses of TK1 Data
The empirical Hill model of the average activity of an
enzyme per catalytic site as a function of the total
substrate concentration [ST] is
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where kmax is the maximum activity obtained in the limit of
high/saturating substrate concentrations, S50 is the total
substrate concentration at k = 1/2kmax, and if the Hill
coefficient h is greater than 1 or less than 1 the enzyme is said
to exhibit positive or negativeHill cooperativity, respectively.
Non-weighted nonlinear least squares fits of this model to
five human tetrameric TK1 datasets [3-7] are shown in Fig. 1.
Collectively, these fits suggest a literature median TK1 Hill
model of kmax = 4/sec, S50 = 0.6μMandh= 1.25; hereafter, all
units are in μM and seconds.

The Hill model has an amplitude scale parameter kmax, a
concentration scale parameter S50, and thus only one
shape parameter h. It therefore cannot represent enzymes
that require different shape parameters in the regions [ST]
>S50 versus [ST] <S50. Further, if non-weighted least
squares is used and the data are not transformed to
stabilize the variance, k measured closer to saturating
concentrations will be over weighted because fluxes must
be positive and their variance must therefore decrease as
flux measurements approach zero. Thus, if the variance is
not stabilized, and/or weights are not used, h will adjust

itself more to fit curvature at [ST] >S50 than at [ST] <S50.
That this is a problem in Fig. 1 is apparent from the
correlations in the residuals of the first two datasets. These
residuals clearly indicate a poor fit at low substrate
concentrations, as one would expect if data in this region
were not given adequate weight in the sum of squared
errors. To correct this, squared error weights of 1/k2 were
used to increase the importance of deviations at smaller k
values; here k denotes data and k (e.g. in the Hill model) is
the expected value of this data (both symbols will be used
to denote both collections of points and individual points,
and in rare cases where statements are true only for the jth
data point, these symbols will be replaced by k(j) and k(j),
respectively). The results are shown in Fig. 2. The relative
residuals therein are more homogeneous and less trendy
than the absolute residuals in Fig. 1.Differences in h values
between these figures suggest that TK1 average activity
shapes may indeed differ between the regions [ST] >S50
and [ST] <S50. Figure 2 also suggests that the literature
median h should be 1.1 rather than 1.25. Further, it shows
that the third dataset now stands alone with h = 1.6; as
removal of this dataset’s lowest concentration data point
lowers this h to an acceptable value of 1.28, this data point
will be excluded from subsequent analyses.

Figures 1 and 2 strongly suggest that the literature
collectively favors positive cooperativity over no (and
negative) cooperativity, since h ≤ 1 was never observed
and the probability of 10 coin tosses of the same sign in

Figure 1
Non-weighted nonlinear least squares Hill model fits to 5 datasets. Residuals of Munch-Petersen et al. 1993 and
Berenstein et al. 2000 show a trend from positive to negative values across lower fitted values, i.e. poor fits. The dataset of
Birringer et al. 2006 is an outlier in that its kmax is 15-30-fold smaller than those of the other datasets. The data of Li et al. 2004
is different in that its Hill coefficient is ~1 rather than 1.24-1.30. The 2004 data show that the variance increases with increases
in fitted values, as it should since activities cannot be negative and thus the activity variances must decrease with decreasing
expected values. The Hill coefficients presented here approximately equal those of the original publications.
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a row is 2*2-10 = 1/512. Based on this literature wide
conclusion, the Michaelis-Menten model will be
removed from the space of plausible mass action models
below, i.e. it will not be fitted to the data and thus will
not contribute to model averages.

Mass Action Based Models
A model of tetrameric human thymidine kinase 1 in
quasi-equilibrium with its substrate thymidine is given
by the following total concentration constraints (TCCs):
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where [ET] and [ST] are the total enzyme tetramer and
substrate concentrations (these are the manipulated
experimental design variables, or system inputs) and
implicit in Eq. (2) are the following mass action
equilibrium equations (which should also be viewed as
definitions of the complete dissociation constants used):
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Equation (2) is a coupled system of polynomials in the
free concentrations [E] and [S]. It is solved numerically

in the R package Combinatorially Complex Equilibrium
Model Selection (ccems) [11] by embedding it into a
parent system of ordinary differential equations (ODEs)
which solves the polynomials at steady state [12]. The
free concentrations so obtained are then back substituted
into Eq. (3) to estimate the enzyme-substrate complex
concentrations [ESi] and these are then substituted into
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to form the expected activity k. Here, the ki are per site
average activities of enzyme tetramers that have i
occupied substrate sites, averaged over the occupied
sites, and k, on the other hand, is the expected measured
activity as an average over all enzyme catalytic sites,
whether they are occupied by substrate or not. Equations
(2-4) comprise what is called the full model because it is
fully parameterized, i.e. as of yet, no constraints have
been placed on any of its 8 parameters. The TCCs above
are also called the system equations and Eq. (4) is also
called the output linkage [12]. Thus, this is a two-stage
model where K are system parameters, ki are output
linkage parameters, and k(j) = k(j) + εj where <εj> = 0 and
the variance s2(εj) depends on the fitted value k(j); εj is
measurement noise and <εj> is its mean.

If the concentration of free substrate [S] approximately
equals [ST] because the maximum [ET] in the data is
much less than the minimum positive [ST], as is the case

Figure 2
Weighted nonlinear least squares Hill model fits. Reciprocal data squared weights of 1/k2 were used to minimize the
sum of squared relative residuals. Compared to Fig. 1 the Hill coefficients here strike a better balance between low and high
substrate concentrations. The Hill coefficient of Li et al. 2004 is now similar to those of the 1993 and 2000 datasets. The Hill
coefficient of Frederiksen et al. 2004 is now an outlier at h = 1.6.
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in the five datasets analyzed here [3-7], ODE computa-
tions needed to solve the TCCs in Eq. (2) can be avoided
because the second TCC then reduces to [S] = [ST] and by
substitution, the first TCC then reduces to
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where Eq. (3) is now
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If Eqs. (6) and Eq. (5) are substituted into Eq. (4), the
net result is the following 8-parameter rational poly-
nomial model that replaces Eqs. (2-4):
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Here, Eqs. (2-4) and Eq. (7) are both mass action based
full models, but in contrast to Eqs. (2-4), the result in Eq.
(7) is independent of [ET], i.e. the approximation [S] =
[ST] made above is associated with fluxes v = 4k [ET]
scaling linearly in [ET].

Though Eq. (7) is valid without any approximation if
[ST] is replaced by [S], free substrate concentrations are
often unknown unless [S] ≈ [ST], and in these cases it is
best to state the approximation explicitly in the model as
a reminder of its presence, for although Eq. (7) holds
under the conditions ([ET] < 0.1 nM) of the data
analyzed [3-7], it does not hold when [ET] is in the
range of [ST]. Note that ki and K estimated using Eq. (7)
with low [ET] data (where [S] ≈ [ST]) still apply to Eqs.
(2-4) with Eq. (2) solved using ODEs, but solved
using ODEs, the model is also valid at high [ET] where
[S] < [ST].

To generate K equality hypotheses, the complete
dissociation constants in Eqs (2-7) must be rewritten
as products of per-site binary dissociation constants:
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where specific binary reactions are indicated by under-
scores in the subscripts. It is these binary dissociation
constants
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that can plausibly equal each other. Such binary K
equality hypotheses are restricted here to contiguous
blocks shown in Fig. 3 on grounds that if one ligand
disrupts a protein structure, it is unlikely that an
additional ligand will return it to one of its previous
forms, i.e. it is unlikely that an additional ligand will
return a model parameter to one of its previous
values. This argument applies analogously to specific
enzyme complex activities ki (see Fig. 3 legend).

The 8 binary K models in Fig. 3 were automatically
generated and paired with each of 8 analogous k
models to form a product space of 64 models. The
hypothesis

k k k k
K K K KE S ES S ES S ES S

1 2 3 4

2 3
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which corresponds to the Michaelis-Menten model
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was then excluded from the model space based on the
Hill analysis conclusion of Figs. 1 and 2 that some TK1
positive cooperativity must exist. The resulting 63
models were then fitted to the five datasets using
nonlinear least squares; the Box-Cox transformation
[13] with l = 0.5
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was used to stabilized the variance. The Akaike Informa-
tion Criterion (AIC) was then computed for each model:
for normal errors and small sample sizes, AIC = 2*P +
2*P(P+1)/(N-P-1) + N*log (2π) + N*log (SSE/N) + N
where P is the number of estimated parameters (includ-
ing the variance), N is the number of data points, and
SSE is the sum of squared errors [2]. The AICs were then

used to form model probabilities eΔAIC/ΣeΔAIC where
ΔAIC is the difference between a model’s AIC and the
minimum of all model AICs [2]. The model probabilities
were then used to form model probability weighted
averages of the parameters. To minimize the influence of
low probability over-parameterized models whose para-
meter estimates had escaped to large values, averages
were formed as exponentials of model probability
weighted averages of logarithms of the parameter
estimates (for K = eΔG/RT this corresponds to forming
averages of Gibbs free energy changes).

U s i n g t h e v e c t o r n o t a t i o n K ≡
( K K K KE S ES S ES S ES S_ _ _ _

, , ,2 3 ) μM and k = (k1, k2, k3,
k4) sec-1, the model averages formed using all 63 of the
3- to 8-parameter models (Fig. 4) suggested the follow-
ing mechanisms: the 1st dataset, with K = (1.8, 1.8, 2.3,
2.2) and k = (7, 6, 6, 3.6), supports K negative
cooperativity (which maps to Hill coefficients h < 1)
annihilated by stronger k negative cooperativity (which,
counterintuitively, maps to h > 1, see below); the 2nd

dataset, with K = (.76, .78, .74, .20), supports enhanced
4th substrate binding; the 3rd dataset supports enhanced
activity and affinity of complexes with 2 or more bound
substrates; the 4th dataset supports K positive coopera-
tivity combined with k negative cooperativity; and the
5th dataset supports both K and k positive cooperativity
(coefficients are given in Fig. 4).

To characterize the relationship between Hill coopera-
tivity and k and K cooperativity, the Hill model was
fitted to samples of various simulated mass action

Figure 3
K equality hypotheses. Edges are binary dissociation constants and nodes are complexes shown on the right.
Edges marked = or – are alleged equal. Unmarked edges are independently estimated. An analogous figure arises for complex
specific activities ki if edges are mapped to the nodes below them.
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models. The results (Fig. 5) show that k negative
cooperativity maps to h > 1, though with poorer fits as
the cooperativity becomes stronger. Meanwhile, k
positive cooperativity, and K positive or negative
cooperativity, map to h in expected ways. These results
suggest that K and k work together to create h > 1 in the
4th dataset and that, for the 1st dataset, k negative
cooperativity (which creates Hill positive cooperativity)

annihilates slight K negative cooperativity (which creates
slight Hill negative cooperativity).

To obtain single measures of trends, the K and k of
models that had model probabilities >10-6 were normal-
ized by their means and fitted to straight lines versus the
integers 1 to 4. The two slopes obtained in this way are
shown as points in Fig. 6. This figure shows that the 2nd,

Figure 4
Model averages. A Box-Cox transformation with l = 0.5 was used to stabilize the variance. The residuals shown are thus
transformed. For parameter estimate interpretations see text.

Figure 5
Hill model fits to simulated data. In the first three columns K = (0.6, 0.6, 0.6, 0.6) was held fixed and the spread of k values
was increased to simulate greater degrees of k negative (top row) and positive (bottom row) cooperativity. Analogously, in
the 4th to 6th columns, k = (4, 4, 4, 4) was held fixed and K was varied. These simulations demonstrate that increases in
k negative cooperativity map to increases in Hill positive cooperativity until a point is reached (e.g. in the 2nd column) where
the fit is too poor to accept. Meanwhile, k positive cooperativity in the bottom row of columns 1 to 3 and K cooperativity
in columns 4 to 6 map to Hill coefficients h in an expected manner.
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3rd, and 5th datasets form a group in that they have no
models in the lower right quadrant and more models in
the left two quadrants than in the right two quadrants,
i.e. consistent with k and K working together to
implement Hill positive cooperativity.

Literature Model
To provide one mathematical representation of the TK1
literature for use in network models of dNTP supply [8],
an average of the models in Fig. 4 was formed. To give k
values of the 5th dataset fair representation, k means
were averaged independent of k shapes (which were
averaged as percentages of means). This yielded the
model K = (1.0, 0.9, 0.9, 0.8) and k = (4.0, 4.3, 4.4, 4.1).

The percent contributions of 3- and 4-parameter models
to the model averages, indexed by the 5 datasets, were
(.04, 90, 100, 80, 100) and (97, 10, 0, 20, 0),
respectively, i.e. the 1st dataset requires 4-parameter
models and the 3rd and 5th datasets (with lowest sample
sizes) require only 3-parameter models. If the three
highest [ST] data points of the 1st dataset are deleted to
eliminate a post kmax downturn in k at high [ST] (Fig. 4),
97% of the 1st dataset’s model average is then due to 3-
parameter models. Since, if deleted, the 1st dataset’s
model average would have been K = (1, 1, 1, 0.9) and k =
(4, 4, 4.5, 4.1), i.e. with K positive (instead of negative)
cooperativity that is consistent with the other datasets,
and since, if deleted, the slopes of the 1st dataset in Fig. 6
then move into the upper left quadrant to yield a plot
similar to those of the 2nd, 3rd and 5th datasets, these 3
data points were excluded from all subsequent analyses.

Reasons to restrict the model space to the six 3-
parameter models DFFF.DDDD, DDLL.DDDD,
DDDM.DDDD, DDDD.DFFF, DDDD.DDLL and
DDDD.DDDM (here K components are on the left, k
components are on the right, and letters are the same

when parameters that correspond to their positions
equal each other) include:

1. All 6 of these models fit all 5 datasets well (Fig. 7),
as one might expect since h not far from 1 implies
that the data are not far from the Michaelis-Menten
model that lives within each of these models if two
parameters equal each, i.e. it is reasonable to expect
that each model can adjust its 3rd parameter to meet
differences between h = 1 and h = 1.1 to 1.3.
2. Some 4-parameter models fitted to their own
simulated data in the absence of noise across
physiological thymidine levels of 0.1 μM to 1.2 μM
[14] showed signs of over-parameterization (i.e.
failure to return true parameter values and sensitivity
to initial parameter values).
3. The 4-parameter model contribution to the 4th

dataset was mostly due to DFFF.DFFF which is
already represented in the model average via the
two 3-parameter models DFFF.DDDD (32%) and
DDDD.DFFFF (25%), but the 4-parameter model
claims an unrealistic k1 of 25, i.e. it is likely over-
parameterized and causing an undue impact on the
average; other models with similar issues are also
eliminated if only 3-parameter models are fitted.

The model space was thus restricted to 3-parameter
models and a total of 4 outliers were removed (recall
that the lowest [ST] data point of the 3rd dataset was
removed based on the Hill analysis of Fig. 2). The net
results of these actions are that now the 1st dataset favors
a k mechanism with both k positive and k negative
cooperativity, the 2nd dataset fully favors K positive
cooperativity, the 3rd and 4th datasets support balances
of k and K mechanisms, and the 5th dataset favors K
positive cooperativity, see Table 1. These statements are
reflected in the dataset model averages in Table 2
(Fig. 8A) and in literature averages of the 3-parameter

Figure 6
Parameter trend distributions. The k and K of models with probabilities >10-6 were normalized by their means and
fitted to straight lines versus the integers 1 to 4 to yield normalized slopes, i.e. parameter trends. The number of models
within each quadrant is shown in the plots; models on axes (constant k and/or constant K) are excluded from these
counts. Based on these counts, the 2nd, 3rd, and 5th datasets group together in that none of them have a model in the
lower right quadrant.
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models in Table 3. The average of the averages in
Table 2 is

K

k

=
=

( . , . , . , . )

( . , . , . , . )

0 85 0 69 0 65 0 51

3 3 3 9 4 1 4 1
(9)

(thick curve in Fig. 8A). If a single predictive model of
TK1 rates is needed in a model of dNTP supply [8], use
of Eq. (9) is recommended. If a single model is to be
fitted to TK1 data, Fig. 7 suggests that any of the 3-
parameter mass action models can be used instead of the
Hill model and Table 3 suggests that DFFF.DDDD and
DDDM.DDDD should perhaps be preferred.

Extrapolations
If the literature model in Eq. (9) is simulated at [ET] = 0.1
nM and sampled at 12 [ST] points between 0.1 μM to 1.2

μM, these “data” (Fig. 8B circles) are fitted well by a Hill
model with kmax = 4.18/sec, S50 = 0.714 μM and h = 1.14.
This Hill model is independent of [ET] and thus does not
deviate from the circles in Fig 8B as [ET] increases into
the range of [ST]. In contrast, with [ET] in activated
lymphocytes estimated to be 0.04 μM based on TK1
tetramers of 100 kDa and an enzyme concentration of 4
μg/ml [4], in some cells [ET] could reach 0.1 μM, and at
this concentration, and much more so if [ET] reached 0.6
μM, drastic differences in the shape of the response are
obtained if Eq. (2) is solved exactly using ODEs [12]. The
differences between the circles and triangles and circles
and plus signs in Fig. 8B are the errors that would result
if the fitted Hill model were used at [ET] = 0.1 μM or 0.6
μM, respectively. Meanwhile, the six 3-parameter mass
action models also provide excellent fits to the [ET] = 0.1
nM simulated data, but they change shapes and thus

Figure 7
The 3-parameter mass action models fit the data well. The bottom three rows support K positive cooperativity, the 1st

and 3rd support k positive cooperativity, and the 2nd row supports k negative cooperativity in all but the second dataset.
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extrapolate better to [ET] = 0.1 μM and [ET] = 0.6 μM
(dashed lines Fig. 8B). If the 3-parameter mass action
models are capable of representing TK1, experiments at
[ET] = 0.6 μM should yield a k response that lies within
the range of curves spanned by these models in Fig. 8B; if
such k data falls below the literature average (plus signs
in Fig. 8B), support will be gained for a k mechanism
since only one 3-parameter model lies below the average
and it is a kmodel, and if the data falls slightly above the
literature average support will be gained for a K
mechanism. In all of these extrapolations it is assumed
that mass action equilibriums of Eqs. (3) are rapid
relative to changes in [ST], i.e. that Eqs. (2-4) can be
coupled to -d [ST]/dt = 4k([ST], [ET]) [ET] to form a
differential algebraic equation (DAE) model of TK1.

Discussion
The 8-parameter full model fits the datasets without
capturing much noise in its predictions (Fig. 9) and this
is consistent with unrealistically different parameter
values being needed to create a wavy response in
Fig. 10. Thus, for this model space, over-parameteriza-
tion manifests itself as highly correlated parameters (to a
point of becoming non-identifiable) rather than over fits
of expected values (e.g. as in the case of n-th order
polynomial perfect fits to n+1 data points). The problem
that arises when models have essentially non-identifi-
able parameters is that optimizations can then escape to
large and meaningless parameter values. Though low
model probabilities typically annihilate the influence of
such models on model averages, with many models

Table 1: Models that contributed more than 5% to a model average

Dataset Model Weight K1 K2 K3 K4 k1 k2 k3 k4

1 DDDD.DDDM 0.444 1.28 1.28 1.28 1.28 4.99 4.99 4.99 4.11

1 DDDD.DDLL 0.298 0.72 0.72 0.72 0.72 2.91 2.91 4.18 4.18

1 DDDM.DDDD 0.219 1.02 1.02 1.02 0.56 4.12 4.12 4.12 4.12

2 DDDM.DDDD 0.978 0.76 0.76 0.76 0.20 7.02 7.02 7.02 7.02

3 DFFF.DDDD 0.393 1.32 0.54 0.54 0.54 3.92 3.92 3.92 3.92

3 DDDD.DFFF 0.335 0.53 0.53 0.53 0.53 0.96 3.93 3.93 3.93

3 DDDD.DDLL 0.204 0.36 0.36 0.36 0.36 1.35 1.35 3.80 3.80

3 DDLL.DDDD 0.059 0.90 0.90 0.41 0.41 3.80 3.80 3.80 3.80

4 DFFF.DDDD 0.400 0.65 0.49 0.49 0.49 4.67 4.67 4.67 4.67

4 DDDD.DFFF 0.314 0.48 0.48 0.48 0.48 3.50 4.67 4.67 4.67

4 DDLL.DDDD 0.118 0.57 0.57 0.48 0.48 4.66 4.66 4.66 4.66

4 DDDD.DDDM 0.074 0.60 0.60 0.60 0.60 5.01 5.01 5.01 4.67

5 DFFF.DDDD 0.545 1.62 0.53 0.53 0.53 0.27 0.27 0.27 0.27

5 DDLL.DDDD 0.234 1.08 1.08 0.32 0.32 0.26 0.26 0.26 0.26

5 DDDD.DFFF 0.192 0.56 0.56 0.56 0.56 0.06 0.28 0.28 0.28

Table 2: Model averages of the datasets

Dataset K1 K2 K3 K4 k1 k2 k3 k4

1 1.02 1.02 1.01 0.89 4.0 4.05 4.51 4.14

2 0.76 0.76 0.75 0.20 7.0 6.99 7.01 7.02

3 0.73 0.51 0.49 0.49 2.0 3.16 3.90 3.89

4 0.56 0.50 0.49 0.49 4.3 4.65 4.69 4.67

5 1.19 0.64 0.49 0.47 0.2 0.27 0.27 0.27
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fitted, some will have parameter estimates that are large
enough to cause noise in the overall model average
parameter estimates. Such models are of little to no value
if the goal is to carry information to a lower scale of
mechanisms, though they are perhaps still useful as
predictors of reaction rates (i.e. when information is
being carried to higher scales of metabolic networks). By
using a basis set of only 3-parameter models, monotonic
parameter estimate trends resulted (Eq. 9). As

monotonic trends are more biologically plausible than
noisy trends, this suggests that the parameter estimates
absorbed relatively little noise, i.e. that restriction to a
parsimonious model basis set of only 3-parameter
models kept noise out of the model average parameter
estimates.

In Fig. 10 horizontal lines are shown at k1/4, 2k2/4, 3k3/4
and 4k4/4 and vertical lines are shown at K1/4, 2K2/3,

Figure 8
Literature model average. A) Model averages of Table 2 were equally weighted to form the literature average in Eq. (9)
(thick line). B) The literature average was extrapolated to [ET] in the range of [ST]. Although solutions to Eqs. (2-4)
match their rational polynomial approximation in Eq. (7) at [ET] = 0.0001 μM (o), this approximation fails at [ET] = 0.1 μM (Δ)
and fails drastically at [ET] = 0.6 μM (+). All six of the 3-parameter mass action models (dashed lines) fit the literature average
at [ET] = 0.0001 μM (o) but diverge in their extrapolated predictions at [ET] = 0.1 μM and [ET] = 0.6 μM.

Table 3: Literature averages of the 3-parameter models

Model Weighta K1 K2 K3 K4 k1 k2 k3 k4

DFFF.DDDD 1.34 1.14 0.62 0.62 0.62 4.08 4.08 4.08 4.08

DDLL.DDDD 0.47 0.89 0.89 0.50 0.50 4.02 4.02 4.02 4.02

DDDM.DDDD 1.26 0.80 0.80 0.80 0.31 3.95 3.95 3.95 3.95

DDDD.DFFF 0.84 0.61 0.61 0.61 0.61 2.08 4.18 4.18 4.18

DDDD.DDLL 0.56 0.82 0.82 0.82 0.82 2.78 2.78 3.70 3.70

DDDD.DDDM 0.53 0.93 0.93 0.93 0.93 3.52 3.52 3.52 3.92

aThe total weight equals 5 datasets.
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3K3/2 and 4K4. As a model approaches the 2-parameter
limit of the Michaelis-Menten model, the horizontal
lines become evenly spaced and the vertical lines
position themselves at Km/4, 2Km/3, 3Km/2, and 4Km.
In this limit plateaus and peaks disappear and only two
parameters can be estimated accurately regardless of the
density, range, precision and accuracy of the measure-
ments. As deviations from this limit arise, a third
parameter can be identified, and with greater changes
more parameters can be estimated. If an enzyme’s profile
has no apparent peaks or plateaus on its rise up, it may
never yield more than 3 or 4 meaningful parameter
estimates. And if measurements are restricted to lie

within a grid of physiologically relevant concentrations,
the number of parameters that can be estimated can only
be less; rationale for such restrictions is that if two
models do not differ over any physiologically relevant
reactant concentrations, either can be used.

It is known that TK1 is tetrameric at the physiologic ATP
levels (2.5 to 3mM) of the TK1 data analyzed [4,15,16]. The
literature model provided by Eq. (9) should thus be valid
when applied to such situations. If predictions are needed
for situations where TK1 dimers and tetramers coexist, two
models may be needed, one for the dimer population and
one for the tetramer population. Such situations may exist
when TK1 is phosphorylated on serine 13 [6].

When the number of catalytic sites is greater than the
number of substrates, as in the proposed experiments with
[ET] = 0.6 μM (and thus [TK1T] = 2.4 μM), most catalytic
sites will process at most 1 or 2 substrates across the time
course of product formation.With average conversion times
of 0.25 seconds once a substrate is bound to a catalytic site,
assuming exponentially distributed processing times, the
probability that a particular bound substrate has not been
converted to product within one second is e-4 = 0.018. Thus,
if the substrates are all initially bound, less than 2% of [ST]
will remain after 1 second. Note that if no enzyme has more
than one substrate bound during the time course of the
measurements, at most k1 and K1 can be estimated from the
data. Indeed, differences in k1 dominate the 3-parameter
model separations at [ET] = 0.6 μM in Fig. 8B where, in the
limit of low [ST], the number of tetramerswith one substrate
approaches [ST] and the rate law thus approaches 1/4 k1 [ST].

Conclusion
All six of the 3-parameter mass action models have two
advantages over the Hill model (which also has 3
parameters): 1) they provide a means of extrapolation to
[ET] in the range of [ST], and 2) conditional on their
truth, they yield more interesting parameter estimates.
Though the Hill model was useful in that it indicated
that the mutual Michaelis-Menten submodel could be

Figure 9
Full model fits. Noise is captured by the parameter estimates of the 8-parameter full model much more than by the expected
values of its response. See text.

Figure 10
The model K = (10-6, 10-3, 1, 103) and k = (100, 10, 40,
10). Horizontal lines are k1/4, 2k2/4, 3k3/4 and 4k4/4 and
vertical lines are concentrations of [ST] at which half the
species are [ESi] and the other half are [ESi+1]; from Eq. (8)
the vertical lines are at K1/4, 2K2/3, 3K3/2 and 4K4.
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excluded from the space of mass action models, the
advantages of mass action models, and averages thereof
(Eq. 9), suggest that they are better final end products of
enzymological research.

Methods
Data
All of the datasets were digitized using plotDigitizer [17].

Analysis
The R package ccems was used to generate and fit the
models [11].
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Reviewer’s comments
Reviewer’s report 1
Philip Hahnfeldt, Tufts University
1. Please provide an example of howTCCmodels are used to
generate product formation time courses wherein [ST]
decreases. 2. In your 2008 paper you included model
conjectures that certain complete dissociation constants
were approximately infinite. Why were these not explored
here? 3. Perhaps it should be emphasized that if a tetramer

has j catalytic sitesoccupiedby substrates, the average activity
parameter kj may not be representative of the activities of the
individual sites. Finally, 4. it would be helpful if it was
explicitly stated how data in reciprocal seconds used in this
paperwereobtained fromdataprovided inother units in the
cited papers.

Radivoyevitch’s Responses
1) Suppose [ST] = 0.05 μM, [ET] = 0.05 μM and that the
literature model in Eq. (9) holds. Fig. 11 shows product
formation time courses generated using ODEs using the
rational polynomial model of Eq. (7) (solid curve) as
well as DAEs using the TCC model of Eqs. (2-4) (dotted
curve). For details, R codes used are provided in Fig. 12.

2) Model averaging makes more sense for binary K models
than for complete K models since K infinity hypotheses are
difficult to average. Though the use of association rather
than dissociation constants may appear to remedy this, if
one considers ΔG to be the true underlying parameter, the
choice then is really between positive versus negative
infinity, rather than zero and infinity, and the problem
persists. Thus, to keep the paper focused on model
averaging, I decided not to consider K infinity hypotheses.

3) Using activity averages was necessary because only
one polynomial term [E][S]j in the equations represents
tetramers with j occupied catalytic sites, so there is no
way to distinguish site activities. Indeed, the jth bound

Figure 11
Rational polynomial versus TCC product formation time courses. The literature average model of Eq. (9)
[i.e. K = (0.85, 0.69, 0.65, 0.51) and k = (3.3, 3.9, 4.1, 4.1)] was simulated for [ST] = 0.05 μM and [ET] = 0.05 μM using the
rational polynomial model of Eq. (7; solid curve) and TCCs of Eqs. (2-4; dotted).
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Figure 12
R codes used to generate Figure 11. The top half of these codes find the initial free concentrations [E] and [S] that are
then used by the differential algebraic equation (DAE) solver daspk of the R package deSolve.
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substrate could have no activity and this could either
decrease the average, if the other site activities stayed the
same, or increase it, if the other site activities increase
enough to offset the loss.

4) If R and ccems are installed, load(ccems) followed by
?TK1 yields Table 4. In this table E, S = dT, and X = ATP
are total concentrations in μM, and the product flux
measurements v are in μmol/min per mg of enzyme in

Table 4: TK1 literature data

Ea S X V Figure Year First Author set k

8.00E-05 0.051474 2500 0.489 4 1993 MunchPetersen 1 0.20375

8.00E-05 0.097841 2500 0.861 4 1993 MunchPetersen 1 0.35875

8.00E-05 0.201282 2500 1.57 4 1993 MunchPetersen 1 0.654167

8.00E-05 0.39749 2500 2.85 4 1993 MunchPetersen 1 1.1875

8.00E-05 0.589425 2500 3.79 4 1993 MunchPetersen 1 1.579167

8.00E-05 1.005871 2500 5.14 4 1993 MunchPetersen 1 2.141667

8.00E-05 2.026393 2500 6.91 4 1993 MunchPetersen 1 2.879167

8.00E-05 3.045455 2500 8.04 4 1993 MunchPetersen 1 3.35

8.00E-05 4.033816 2500 8.35 4 1993 MunchPetersen 1 3.479167

8.00E-05 5.081395 2500 8.74 4 1993 MunchPetersen 1 3.641667

8.00E-05 5.933333 2500 8.9 4 1993 MunchPetersen 1 3.708333

8.00E-05 8.107143 2500 9.08 4 1993 MunchPetersen 1 3.783333

8.00E-05 12.37845 2500 9.42 4 1993 MunchPetersen 1 3.925

8.00E-05 19.91091 2500 8.94 4 1993 MunchPetersen 1 3.725

8.00E-05 27.90274 2500 9.18 4 1993 MunchPetersen 1 3.825

8.00E-05 64.38849 2500 8.95 4 1993 MunchPetersen 1 3.729167

2.00E-04 0.04535 2500 0.907 2a 2000 Berenstein 2 0.377917

2.00E-04 0.096983 2500 2.25 2a 2000 Berenstein 2 0.9375

2.00E-04 0.197633 2500 3.34 2a 2000 Berenstein 2 1.391667

2.00E-04 0.394156 2500 6.07 2a 2000 Berenstein 2 2.529167

2.00E-04 0.802521 2500 9.55 2a 2000 Berenstein 2 3.979167

2.00E-04 1.183486 2500 12.9 2a 2000 Berenstein 2 5.375

2.00E-04 1.587112 2500 13.3 2a 2000 Berenstein 2 5.541667

2.00E-04 2.008547 2500 14.1 2a 2000 Berenstein 2 5.875

2.00E-04 4.047619 2500 15.3 2a 2000 Berenstein 2 6.375

2.00E-04 7.819905 2500 16.5 2a 2000 Berenstein 2 6.875

2.00E-04 16.1 2500 16.9 2a 2000 Berenstein 2 7.041667

2.00E-04 24 2500 16.4 2a 2000 Berenstein 2 6.833333

2.00E-04 40 2500 16.7 2a 2000 Berenstein 2 6.958333

2.00E-04 79.9 2500 17.6 2a 2000 Berenstein 2 7.333333

(Continued)
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Table 4: TK1 literature data (Continued)

Ea S X V Figure Year First Author set k

2.00E-04 120 2500 16.1 2a 2000 Berenstein 2 6.708333

2.00E-04 0.0699 2500 0.342 4a 2004 Frederiksen 3 0.1425

2.00E-04 0.119 2500 1.03 4a 2004 Frederiksen 3 0.429167

2.00E-04 0.214 2500 1.92 4a 2004 Frederiksen 3 0.8

2.00E-04 0.427 2500 3.63 4a 2004 Frederiksen 3 1.5125

2.00E-04 0.846 2500 5.81 4a 2004 Frederiksen 3 2.420833

2.00E-04 1.24 2500 6.46 4a 2004 Frederiksen 3 2.691667

2.00E-04 1.65 2500 6.49 4a 2004 Frederiksen 3 2.704167

2.00E-04 2.04 2500 7.55 4a 2004 Frederiksen 3 3.145833

2.00E-04 4.05 2500 8.76 4a 2004 Frederiksen 3 3.65

2.00E-04 8.01 2500 8.62 4a 2004 Frederiksen 3 3.591667

2.00E-04 0.075862 2500 1.32 2a 2004 Li 4 0.55

2.00E-04 0.035823 2500 0.566 2a 2004 Li 4 0.235833

2.00E-04 0.198658 2500 2.96 2a 2004 Li 4 1.233333

2.00E-04 0.314729 2500 4.06 2a 2004 Li 4 1.691667

2.00E-04 0.402344 2500 5.15 2a 2004 Li 4 2.145833

2.00E-04 0.806024 2500 6.69 2a 2004 Li 4 2.7875

2.00E-04 1.007353 2500 8.22 2a 2004 Li 4 3.425

2.00E-04 1.202703 2500 8.01 2a 2004 Li 4 3.3375

2.00E-04 1.638507 2500 8.34 2a 2004 Li 4 3.475

2.00E-04 2.01467 2500 8.24 2a 2004 Li 4 3.433333

2.00E-04 9.72 2500 10.8 2a 2004 Li 4 4.5

2.00E-04 19.7 2500 11.1 2a 2004 Li 4 4.625

2.00E-04 49.7 2500 11.6 2a 2004 Li 4 4.833333

2.00E-04 100 2500 10.9 2a 2004 Li 4 4.541667

0.000306 0.0917 6000 0.012 4a 2006 Birringer 5 0.021786

0.000306 0.249 6000 0.0282 4a 2006 Birringer 5 0.051198

0.000306 0.498 6000 0.0709 4a 2006 Birringer 5 0.128722

0.000306 0.747 6000 0.0862 4a 2006 Birringer 5 0.1565

0.000306 0.996 6000 0.0883 4a 2006 Birringer 5 0.160312

0.000306 1.99 6000 0.116 4a 2006 Birringer 5 0.210603

0.000306 3 6000 0.133 4a 2006 Birringer 5 0.241467

0.000306 4.49 6000 0.127 4a 2006 Birringer 5 0.230574

0.000306 5.99 6000 0.143 4a 2006 Birringer 5 0.259622

aE = TK1, S = dT and X = ATP are in total concentrations in μM. Product dTMP fluxes v are in umol/min per mg of enzyme in datasets 1-4 and in
pmoles/min in the 5th dataset.
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datasets 1 through 4 and in pmoles/min in the 5th

dataset. Since TK1 is 25 kDa = 25 mg/μmole, 1 mg of
TK1 equals 0.04 μmoles of enzyme and the conversion
between v and k in 1/seconds is thus k = v/(.04*60). For
the 5th dataset the concentration of the enzyme is 306
pM and the reaction vessel is 30 μL, so the total amount
of enzyme is 30 μL * (0.000306 pmoles/μL) = 0.00918
pmoles and thus k = v/(0.00918*60).

Reviewer’s report 2
Fangping Mu, Los Alamos National Laboratory (nominated by Bill
Hlavacek, LANL)
In this report, the author analyzes the cooperativity of
tetrameric human thymidine kinase 1 (TK1) activity.
Literature data suggests that activity is marked by
positive cooperativity rather than no cooperativity or
negative cooperativity. The author formulates mass-
action models to study possible mechanisms of coop-
erativity. Five literature data sets with 16, 15, 10, 14 and
9 data points were collected. The data sets were used to
estimate the values of eight parameters in the mass-
action models via a fitting procedure. The author finds
that the best-fit mass-action models are marked by
positive cooperativity.

The mass-action models have eight parameters that are
adjusted to fit only 9 to 16 data points. The small
number of data points may not be sufficient to identify
the parameters in the models considered. The author
uses AICs to measure the quality of model selection, but
multiple models seem to fit the data equally well. The
statistics are estimated from the training data, and it is
not known how well the models can be used for testing.
In other words, the models may not be predictive.

Positive cooperativity is supported by Hill coefficient
fitting to the data sets. Without a 3D structure analysis of
protein-ligand binding, a pure statistical fitting proce-
dure may not provide much insight into the mechanism
of cooperativity.

Radivoyevitch’s Responses
Regarding your first point, only fits of the six 3-
parameter models were used to produce the final
model, i.e. what appeared to be an 8-parameter model
was thus the model probability weighted model average
of 6 fitted 3-parameter models. I agree that as shown in
Fig. 7, each of the six 3-parameter models fits each of the
datasets well, but I disagree that the models may not be
predictive. Indeed, the whole point of Fig. 9 is to state
that even the fitted 8-parameter model is predictive, i.e.
there is very little high frequency noise in the expected
values generated by these models. Instead of yielding
poor predictions, because this model space has a fairly

constrained range space, as demonstrated by the
extremely different K values needed to introduce oscilla-
tions in Fig. 10, here over-parameterized models lead to
noisy model parameter estimates as shown in Fig. 9, i.e.
rather than poor prediction, the problem here is that we
have weak parameter estimate inferences. If interests are
in a TK1 model that will be inserted into a higher scale
model of dNTP supply, such over-parameterization may
not be a major concern. On the other hand, if the goal is
to use the model to reach lower scale enzyme structures,
stronger parameter estimate inferences are desirable. The
basis set of six 3-parameter models yields monotonic
parameter value trends in the literature average model
average and this suggests that the parameter estimates
are not noisy. Note too that TK1 structural information,
namely that it is a tetramer (by size exclusion) at the ATP
concentrations of the experiments, was used to constrain
the model space to the forms explored. The goal then is
to have the model capture as much information as
possible, and I believe the analysis presented comes
closer to this than any previous TK1 data analysis.

Reviewer’s report 3
Rainer K. Sachs, University of California at Berkeley
No comment.
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