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Abstract

Background: The evidence for universal common ancestry (UCA) is vast and persuasive. A phylogenetic test has
been proposed for quantifying its odds against independently originated sequences based on the comparison
between one versus several trees. This test was successfully applied to a well-supported homologous sequence
alignment, which was however criticized on the basis of simulations showing that alignments without any
phylogenetic structure could mislead its conclusions.

Results: Here we present a simplified version of this same counterexample, which can be interpreted as a tree with
arbitrarily long branches, and where the UCA test fails again. We also present another case whereby any sufficiently
similar alignment will favour UCA irrespective of the true independent origins for the sequences. Finally, we present a
class of frequentist tests that perform better than the purportedly formal UCA test.

Conclusion: Despite claims to the contrary, we show that the counterexamples successfully detected a drawback of
the original UCA test, of relying on sequence similarity. In light of our own simulations, we therefore conclude that the
UCA test as originally proposed should not be trusted unless convergence has already been ruled out a priori.

Reviewers: This article was reviewed by Professor Eugene Koonin, Dr. Yuri I. Wolf and Professor William Martin.
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Background
Douglas Theobald [1] proposed a quantitative test (from
now on, the UCA test) to distinguish common ancestry
(CA) from independent origins (IO) of a set of aligned
sequences, by modelling CA as a single tree connect-
ing all sequences against two or more trees representing
IO. To proceed with the actual calculations, nonetheless,
the same single alignment represented both hypotheses –
which did not matter for the specific, highly curated data
set he analysed. However, we and others have raised con-
cerns that such a test would mistakenly infer homology
(common ancestry) whenever the sequences are suffi-
ciently similar [2–6], rendering it suspicious for align-
ments of arbitrary quality. In particular Koonin and Wolf
[3] (K&W) presented a counterexample where alignment
columns did not follow any phylogenetic structure and
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were simply sampled from a pool of amino acid frequen-
cies. This simulation model, called “profile” model in [7],
was enough to skew the original UCA test into preferring
UCA. Theobald defended his test replying that hismethod
would work as advertised once extended to include the
true generating model of the simulated counterexamples,
and also concluded that the criticisms did not apply for his
“very high confidence alignment” [7].
We have already shown that the UCA test fails even for

sequences simulated exactly under the described models
of CA and IO, due to the obligatory alignment optimiza-
tion step [2]. We also commented on the arbitrariness
of resorting to sequence similarity justifications, since
all examples where the UCA test favoured IO had very
low pairwise similarity [2], not to mention that such
a requirement would imply in a unacceptable selection
bias [6].
Here we explain why the K&W model was a legiti-

mate simulation of IO, showing that the UCA test fails
even for a simplified version of this model where the
true substitution model is amongst the tested ones. We
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also simulated IO alignments that satisfy the elusive con-
straints of quality/similarity imposed in [7] and conclude
that UCA will be favoured whenever the sequences are
not clearly unrelated. Furthermore, we discuss about the
lack of mathematical justification for comparing likeli-
hoods between different alignments, and illustrate it with
a simulation showing that the UCA test would fail even if
we compare sequences aligned independently. Finally, we
introduce a class of frequentist tests that supersede the
original UCA test.

Koonin andWolf’s profile model
K&W simulated alignments where the amino acid states
for each column came from a given distribution of equilib-
rium frequencies – that is, the state for each taxon at the
i-th site was sampled from a discrete (categorical) distri-
bution π [i] =

(
π
[i]
A ,π [i]

R , . . . ,π [i]
V

)
. In this case the original

UCA test failed, since the log-likelihood of the whole sim-
ulated data set was always superior than the sum of the
log-likelihoods of arbitrarily split sequences. Theobald [7]
correctly pointed out that K&W’s sequences might “have
evolved according to a star tree with equal branch lengths”
under aMAX-Poisson evolutionarymodel [8], butmistak-
enly assumed that this was equivalent to an UCA scenario.
The star tree from K&W model has all branch lengths
equal to infinity, as we will see, which means IO and
not UCA. There is a key distinction between finite and
arbitrarily large branch lengths, which is what ultimately
discriminates UCA and IO under the original modelling
(see Additional file 1: Appendix – or ([2] Supplementary
Text)).
We can verify that K&W simulation corresponds to a

star tree under an IO scenario by using, for instance,
Equation 1 of [9], which describes a similar model:

P(b | a, t) = e−tδ(a=b) + (1 − e−t)πb (1)

where a and b are respectively the initial and final amino
acid states along a phylogenetic branch of length t, δχ

is the indicator function1, and πx is the equilibrium fre-
quency of state x ∈ (A,R, . . . ,V ). A star tree has only one
internal node, connected directly to all extant sequences.
As we can see, the probability of observing state b under

such a star tree is influenced by the initial state a until
e−t → 0, which happens at t = ∞ and therefore rep-
resenting IO. For any finite branch length t < ∞ the
terminal states will still be correlated to the state at the
root, shared among them. It’s easy to imagine that for very
short branches, the state at the tips of the star tree should
be very similar, since they will mostly be the same as the
state at the internal node.
The source of Theobald’s confusion might be that

although the instantaneous substitution rate does not
depend on the current state of the Markov chain, the
probability of change over an arbitrary time interval does

[10]. In [11] for example it is shown that even for only
two sequences the probability of observing state a in both
sequences at a particular position is given by e−tπa +
π2
a (1 − e−t), while the probability of observing state a in

one sequence and state b in the other at the same column
equals πaπb(1 − e−t).
Therefore, for small time intervals we should expect all

sequences simulated under this star tree to be very similar
(reflecting the common ancestry with the sequence at the
root), while for longer branches they should diverge from
one another until the equilibrium frequencies are reached.
Under K&W’s model the probabilities of observing the
same state a or distinct states a and b are, respectively,
π2
a and πaπb, which are equivalent to the star tree model

above only when e−t = 0, as we saw before. Therefore,
K&W’s model corresponds to a star tree where all branch
lengths are infinitely large – that is, the sequences are
unrelated to their common ancestor and have IO.
A different question is whether we can reliably estimate

all parameters from the K&W simulations. The overall
poor fit ofMAX-Poisson as described in [8] lead us to con-
clude that we can’t, due to over-parameterization being
especially misleading when the number of sequences is
small. In this case there is simply not enough data to
reconstruct the true amino acid frequencies. It might be
the case that a particular data set can by chance have a cor-
responding phylogenetic model with finite branch lengths
that explains the data equally well. But this is not the same
as claiming that the data set came from such a common
ancestry model.
In a nutshell, K&W’s simulations are equivalent to a

MAX-Poisson model over a star tree, but with infinite
branch lengths since each sequence is independent from
the others. It is worth noticing that this star tree is equiva-
lent to any other tree, or to no tree at all, due to the vanish-
ing branches. And therefore K&W’s simulated sequences
are truly originated independently, contra Theobald [7].
To claim otherwise would defeat, by the way, the whole
phylogenetic model selection framework developed in [1]:
if, for each alignment column, sampling the state (of 2
sequences or more) from a common distribution renders
the data related by common ancestry, then the idea that
two independent trees can represent IO would be wrong
since their root positions might be two such ancestral
sequences, whose columns came from an “ancestral soup”
of amino acids – as we show in the (Additional file 1:
Appendix).
To see it from another perspective, we can imagine any

two sequences simulated by K&W as the roots of inde-
pendent phylogenies. If sampling from a common pool
of amino acid frequencies was enough signal for com-
mon ancestry, then the IO model in [1] (of at least one
infinite branch length) would be wrong, since it does
not impose restrictions on the IO evolutionary models
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at the root. The point is that for any combination of
phylogenetic models, the IO assumption as devised in [1]
is mathematically equivalent to an infinite branch con-
necting the nodes (apical or not). A more recent CA test
explores explicitly this relation between the ancestral root
states of two trees [12].

Our simplified simulation: a homogeneous Poisson+F
To avoid the confusion with the overly parameterized
MAX-Poisson model, we reproduced K&W’s simulations
but this time using a homogeneous Poisson model – that
is, all columns i share the same equilibrium frequencies
π [i] = π = (πA,πR, . . . ,πV ). We simulated 8 sequences
with 1000 sites under a randomly sampled vector of
shared amino acid frequencies. More specifically, we used
INDELible [13] to simulate 2 quartets with a collapsed
internal branch of length zero and all terminal branches
with a huge length of 2500 – computationally equivalent
to 8 independently originated sequences from a common
pool of amino acids.
The Akaike information criterion (AIC) model selec-

tion analysis was done with ProtTest3 (version from
18/Oct/2010) under a subset of available models, where
we included the Poisson model used to generate the data.
We were careful to include the true generating model
among those tested by the model selection procedure, to
be charitable and avoid misspecification issues2. To be
consistent with K&W we did not optimize the alignment
for this analysis, although we know that the test would fail
if we aligned them [2]. But while K&Wused a set of empir-
ically observed amino acid frequencies to sample from, we
simulated these frequencies π from uniform distributions
– each simulated data set had a distinct frequency set,
but all sites within a simulation shared the same values.
We use �AIC = AIC(IO) − AIC(UCA), such that posi-
tive values of �AIC favour UCA, and a difference in AIC
larger than 10 indicates that themodel with larger AIC has
practically no support when compared to the smaller one
[14, 15]. Figure 1 shows that in most (> 97%) of our sim-
ulations the UCA was wrongly favoured according to the
UCA test, despite the large tree lengths making us suspi-
cious about these data. Not only that, 75% of the replicates
showed very strong support for the wrong hypothesis
(that is, considering only those with �AIC > 10).

A note on pairwise versus phylogenetic comparisons
In his recent reply to K&W, Theobald gave arguments
favouring Bayesian model selection over frequentist anal-
ysis [7]. But within his overview there seems to be some
confusion about the advantages of his method against
BLAST-based e-values. One thing are the virtues of
Bayesian over frequentist analyses. Another, completely
different issue, is the superiority of phylogenetic against
pairwise sequence comparisons. Theobald’s own solution

200 400 600 800

−
10

0
10

20
30

ML tree length under UCA

A
IC

Fig. 1 �AIC values for the simplified version of Koonin & Wolf’s
simulations. Positive values for �AIC favour UCA, and to ease
interpretation the simulations favouring IO are displayed as blue dots,
while those strongly favouring UCA (�AIC > 10) are red. Marginal
histograms are also shown, and the grey dots represent simulations
favouring UCA only slightly

to “estimate an upper bound for the effect of align-
ment bias” was a (frequentist) random permutation of the
sequences [7], which weakens his discourse against fre-
quentist methodologies. And as we will see below this
advice is incorrect anyway since we cannot compare like-
lihoods between different data.
Theobald compared a Bayesian phylogenetic model

selection with a pairwise null hypothesis framework,
praising the former over the latter [7]. But we would still
prefer a frequentist phylogenetic model over a pairwise
Bayesian one. That is, we might have a Bayesian model
for pairwise homology detection [16] or a frequentist phy-
logenetic model selection, like for instance the one we
present below. Likewise, we could devise a classic hypoth-
esis testing where H0 and H1 are as described in the
Additional file 1: Appendix, using a branch length fixed at
infinity against the alternative hypothesis with the length
free to vary – we do not need to impose the same replace-
ment matrix or other parameters across branches. In all
cases the phylogenetic approach should be preferred over
pairwise comparisons, because we expect that the effect
of using the whole data at once should be more relevant
than the statistical framework we choose.

Data sets conditioned on similarity
Theobald also suggested that his test works without cor-
rections only for “unbiased” alignments [7], which we
interpret as being those with low uncertainty and/or com-
posed of very similar sequences – this alignment quality
requirement of the test was never formally described.
He mentioned “eliminating any potential alignment bias”,
where ‘bias’ refers to “artifactually induce[d] similari-
ties between unrelated sequences” ([7] page 14). But to
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solve the UCA vs IO question we cannot restrict eli-
gible data sets based on similarity, as by doing so we
would be introducing an ascertainment bias towards
alignments where UCA is more likely than for less sim-
ilar ones. And notice that this is not to assume that
similarity implies in homology, but it is a simple recog-
nition that there is a correlation between similarity and
homology that cannot be neglected by excluding the
sequences capable of refuting any of the hypotheses
tested [6]. And we could even speculate that once we
remove the “alignment bias and uncertainty” what we
are left with are columns that share a common ancestor
a fortiori.
It could be finally argued that the UCA test was designed

instead only to distinguish UCA and IO from alignments
that appear to favour UCA – that is, given similar-looking
(or with elusively defined good quality) sequences, the test
could detect independently originated sequences. How-
ever, Theobald himself did not seem to consider this
idea in his examples where the UCA test favoured IO,
as the experiment described in the last paragraph of
page 221 and in the supplementary subsection 3.1 of
[1]. In these experiments, alignment columns for a clade
were randomly shuffled, resulting in very low pairwise
similarity [2].
Theobald claimed that his test worked “without

assuming that sequence similarity indicates a genealog-
ical relationship” [1], so we were interested in checking
whether his test can indeed distinguish similar sequences
with IO from similar sequences with an UCA. Indeed, it
is hard to devise a simulation scenario where sequences
generated under IO are very similar to each other, or are

free from “alignment bias”, and we have shown that all
previous attempts failed at showing the correctness of
the UCA test [2]. We have argued that even summary
statistics contain information about the likeliness of UCA,
and therefore any common ancestry test should take this
information into account [6]. Nonetheless, it might be
ultimately claimed that only bias-free alignments could
invalidate the UCA test. Maybe a simulation where inde-
pendent sequences should converge to a similar protein
structure or to a limited set of structures might fit the
demands, but we do not know how to properly implement
such a model at this point.
The closest approximation we could devise was to

repeat the IO and UCA simulations as in [2], but now
selecting the columns such that the average identity was
above a given threshold. We must recall that this is not
a proper simulation of highly similar IO sequences in
general, since this toy example also suffers from a selec-
tion bias – and the frequency itself of column patterns
defines a phylogeny [17, 18]. Specifically, in this simula-
tion experiment we generated very long multi-sequence
data sets under UCA or IO (as in other simulations
[2, 6]), reordered their columns based on their con-
servation (from higher to lower average identity), and
then selected exhaustively subsets of columns along this
reordered data sets such that the average identity was
above a specific threshold. We used segments of 1000
columns, which were each subjected to the UCA test
twice: once before and once after aligning the segments
with MUSCLE [19].
The results are shown in Fig. 2, where we observe that

the UCA hypothesis was always favoured whenever the
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Fig. 2 UCA test applied over large simulated data sets using a sliding window approach, where data sets’ columns were ordered from lower to
higher average identity. Positive values for �AIC suggest a UCA. The inset shows AIC after optimizing the alignment within the segments (where
the average identity refer to the segment before the alignment step)
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average sequence identity threshold was higher than 0.44,
even for sequences simulated under IO. Segments with
similarities as low as 0.35 could also mislead the test in
favour of UCA. And if we align the segments, then any
sequences with more than 0.25 of average identity (before
aligning) will be inferred as sharing a common ances-
tor, regardless of their actual relationship. Again, this is
not an ideal simulation of highly similar IO sequences
but still it suggests that by picking only the columns with
high similarity we might falsely conclude for UCA. And
importantly for our argument, it suggests that any reason-
ably conserved alignment would favour common ancestry
under the UCA test no matter the actual origin of the
sequences.
We could thus verify that the UCA test is oblivious to

the source of the similarity: as long as the similarity is high
enough it will favour UCA, while low similarities will have
been previously camouflaged by an alignment optimiza-
tion algorithm and even rejected altogether by BLAST or
by the researcher, arbitrarily.

A random permutation test
An interesting alternative to the UCA test that does not
rely on high quality alignments is to apply a permutation
test where the sites for some sequences are shuffled and
then the AICs are recalculated after realignment, telling
us how much the original data departs from those with
phylogenetic structure partially removed. It is inspired
by ([7] page 14), where it was suggested that the model
selection test on one (or several?) shufflings would give
an “upper bound for the effect of alignment bias”. This
randomization test has similarities to the permutation
tail probability (PTP) tests [20, 21], but would invalidate
the AIC and Bayes factor (BF) interpretations since the
support value for UCA cannot be interpreted in isola-
tion3. If we must compare the AICs between the original
and randomized replicates – all favouring UCA, as we
have shown –, then we are back to a frequentist analy-
sis, where e.g. the AIC alone represents just a summary
statistic that cannot be interpreted as probabilistic sup-
port for one of the hypotheses. Furthermore, we must
emphasize that the AIC comparison only has a probabilis-
tic interpretation when evaluated under the same data –
the alignment, unless explicitly accounted for by the
model (for phyml [22], prottest [23] and others the data
are the alignment columns). In other words, we cannot
compare AICs between different alignments as suggested
in [7], and even if we could, then this “discount” should be
an intrinsic part of any formal test. However, although the
original “upper bound” argument proposed by Theobald
is mistaken, it can lead to a valid permutation test.
Indeed, many other statistics may work in such a fre-

quentist approach, that don’t need to rely on AIC or
LnL values. We therefore developed a randomization test

where only simple summary statistics were considered,
and applied it to in silico data sets. For each data set sim-
ulated under IO or UCA (same scenarios as in [2] Suppl.
Mat.) we calculate the summary statistics and then we
create a distribution of these statistics under the hypoth-
esis of independent origins (H0), to which the original
value is compared (the p-value). Each H0 replicate is cre-
ated by changing the columns order for one of the groups
in the original data set, as was done in ([1] section 3.1
of the suppl material) and described also in ([2] Suppl.
Mat. section S2.2). Importantly, we always optimize the
alignment for the original data set and each of the sam-
ples from H0 – so that we can estimate the ML tree, for
instance. The summary statistics that we used were: 1) the
sum of branch lengths of the ML tree for all sequences
estimated under a LG model [24] using phyml; and 2)
the average pairwise identity within groups minus the
average pairwise identity between groups suspected of
having independent ancestry. In both cases we expect
lower values for UCA than for IO, and our p-value is thus
constructed by counting the number of null-distributed
replicates presenting a value as low as the original data
(where “original data” is actually our multiple sequence
alignments simulated with INDELible [13]).
In Fig. 3 we show the results of 400 simulated data sets –

200 simulated under IO and 200 under UCA – where the
null hypothesis was approximated by 100 shufflings (for
each of the 400 data sets). We can see that not only the
summary statistics are clearly different between IO and
UCA data sets, but that the p-values can clearly distin-
guish both cases (with the p-value uniform under the null,
as expected). We could have used the AIC or BF scores
from the original UCA test as the comparison statistics
here, but they are expected to give us similar results.
Furthermore they would not give us any further insight,
since their individual values would “support” UCA even
under IO [2]. And as discussed below, even their differ-
ences or ratios would not represent statistical support any
more because their comparison is illegitimate. Here we
show again, as in [6], that the alignment properties are
by themselves informative about UCA, and even without
employing the whole AIC-based model selection analy-
sis we can test for UCA. We should note that we do not
endorse this test as the ultimate solution: as discussed by
[21], the PTP test itself is flawed (but see [25]) and there
might be caveats with our version as well. In any case,
the “alignment bias” should not be used as a criterion for
the adequacy of the UCA test, since the alignment step
should be an integral part of any formal common ancestry
test [2, 6].

Aligning independently under each hypothesis
Model selection tests can help deciding between models
for a given data set, but they cannot be compared across



Martins and Posada Biology Direct  (2016) 11:19 Page 6 of 10

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.
00

0.
10

0.
20

0.
30

ML tree length under UCA

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0.
0

0.
1

0.
2

0.
3

0.
4

difference in similarity within/between groups

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value using ML tree length

IO simul
UCA simul

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value using similarity difference

Fig. 3 Frequentist non-parametric p-values where the null distribution was approximated by reshuffling columns of a subset of the sequences. On
the left we have the distribution of the test statistics for the “original” sequences simulated under IO (blue) or under UCA (red), while the right show
their associated p-values. At the top the test statistic is the maximum likelihood tree length under the common ancestry hypothesis, and at the
bottom the statistic is the difference in average similarity within each group and between one group and the other

different data. Therefore we should not compare e.g. AIC
values or log-likelihood ratios between different align-
ments, as under phyML and many other programs that do
not consider explicitly the indel process. In contrast to e.g.
[26], for these programs the data are the frequency of site
patterns (i.e. the alignments). That is, alignment columns
are considered independent and identically distributed
observations from the evolutionary process. Therefore we
stress that in order to apply the original UCAmodel selec-
tion test we must use the same alignment for both the IO
and UCA hypotheses.
But what values would we observe if we could simply

align the sequences independently? For this simulation we
used the same simulation scenario as before [2] assuming
an LG+IGF for each independently originated quartet –
that we call B and E since they are based on bacterial
and eukaryotic parameters, respectively. But now under
the IO hypothesis we align the quartets separately – that
is, in order to calculate the AIC(B) we align only the
B sequences, and so forth. We can also try to account
for the different alignment sizes by using the Bayesian
Information Criterion (BIC) [27]:

BIC = k log(N) − 2LnL

which is similar to the AIC but where we have the log of
the number of data points (=column alignments in our
case) instead of a fixed integer. The alignment size will be
generally the same under each IO subset, and will corre-
spond to the original sequence size of 6591 sites, while
under UCA it will be around 10% larger, indicating the
imputation of indels if we align both subsets together [2].
The �AIC values do not change whether we align the

putative independent data sets together or separately, and
trying to correct for the alignment size makes the tests
perform even worse (Fig. 4). Therefore, even if we align
each subset independently from the others, we would still
observe misleading, positive �AICs. Again, the proba-
bilistic interpretation of these information criteria is lost
under this procedure.

Discussion
In Theobald’s response to K&W’s simulations, he showed
that by extending his test to include the true model
(the MAX-Poisson under a star tree with infinite branch
lengths, called “profile” model) it would be preferred over
a single tree with a standard substitution model. This
shows that the evaluated phylogenetic substitution mod-
els are consistent, but do not provide evidence about the
appropriateness of the original UCA test. Even more, the
actual model selection should be thought of as a blind test:
we must not rely on some privileged knowledge about the
true origin of the data set to reject hypotheses before-
hand. Since we never know the true generating model of
real data sets – which is especially true in phylogenet-
ics – we must accept that all models we work with are
misspecified [27].
On the other hand, if the inference for or against UCA

depends on details of the phylogenetic model, then the
test will only be useful when we know the true phyloge-
netic model. We do not expect a useful model to be very
sensitive to model violations, especially when these viola-
tions can be assumed to affect both hypotheses.We expect
the test to favour the correct hypothesis for any model
close enough to what might be the true generating one.
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IC = AIC or BIC) is calculated as �IC = IC(B) + IC(E) − IC(B + E) such that positive values favour UCA. The �IC values were further divided by the
alignment length under UCA, to give scaled values comparable with other analyses

For example if our conclusion for UCA or IO changes
depending on whether allow or not rate heterogene-
ity, whether we include or not a given replacement
matrix, or some other mild model misspecification, then
it becomes hard to defend our conclusion, and we
should not trust this model selection. Our expectation
is that a model good enough will affect both hypotheses
likewise.
We are not against extending the UCA test framework

to include more models, which might help distinguish-
ing an IO data set from an UCA one. After all, the test
output will give the odds ratio given a set of assump-
tions – like for instance rate heterogeneity, common
branch lengths along the alignment, a common topol-
ogy for all sites, etc. And we can always improve on the
assumptions. Furthermore if we can devise an evolution-
ary model whereby independent sequences can mislead
BLAST searches and alignment procedures, certainly we
would like to see it implemented it in such a model
selection framework. But we should accredit it as a con-
tribution to a better model selection test, particularly if
such model could have systematically misled the original
one. Systematically misleading simulations are a valid crit-
icism to a particular model selection scheme, that deserve
credit.
We should not dismiss a model based solely on our sub-

jective impressions about commonplace data sets, either:
novel methodologies are created precisely to discover pat-
terns that were hidden or unexplained so far. Therefore
biological realism or representativeness may not be good
judges of a model’s relevance. In exploratory analysis we
employ several short cuts like skipping similar models or
disregarding those based on assumptions known to be
very unlikely. But when the aim is to assign objectively

probabilities to the hypotheses, then we should consider
and embrace models capable of refuting them.
A more serious problem may be when model mis-

specification happens only under one of the hypothesis
(due to software limitations, for instance). For instance,
cases where amino acid replacement model heterogeneity
between the independently evolved data sets can affect the
test: while under UCA all branches are forced to follow the
same replacement matrix, gamma parameter and equi-
librium frequencies, under IO the independently evolved
groups are allowed to have their own ones. We recognize
that this is an implementation problem and not a the-
oretical one – programs usually make this homogeneity
assumption to avoid overparameterization. Nonetheless,
we should be careful whenever the test favours IO since
it might be the case of a better parameterization – one
set of parameters for each subtree. Whenever the test
favours IO, we should always try to isolate the effect
of the IO assumption against the confounding effect of
amino acid replacement heterogeneity by one of two
ways.
One is by extending the software to replace the fixed

parameter by a variable one. That is, to allow the imple-
mented model to have a variable replacement matrix
along the tree, or a heterogeneous equilibrium frequency
vector across branches, etc. so as the UCA tree can access
the same parameter space as the IO trees. The other is to
assume homogeneity under the IO hypothesis by using the
same parameters over all independently evolved groups,
such that any model misspecification can be “marginal-
ized”. If some apparent support for the IO hypothesis
disappears once we force homogeneity, then we can sus-
pect that the model misspecification was misleading the
test.



Martins and Posada Biology Direct  (2016) 11:19 Page 8 of 10

We maintain that the UCA test as originally proposed
[1] is heavily biased towards UCA, but a good coun-
terargument would be to show a replicable simulation
procedure that generates bias-free alignments where the
test correctly detects IO. The problem lies in that there are
no known mechanisms (at least none that we are aware
of) by which we can simulate independently evolved
sequences that satisfy the quality requirements imposed
in [7] – and any attempt might be met with a spe-
cial pleading, as we have seen. It is worth noticing that
another method has been recently proposed that can
more directly test for ancestral convergence [12]. This
method does not seem to suffer from the drawbacks of
the UCA test, since it takes into account the alignment
step.
Another powerful argument for the common ances-

try of life is to show how distinct genes or different
units of information support similar phylogenetic histo-
ries – and we can only thank Douglas Theobald for the
herculean task of compiling the evidence for it in an acces-
sible manner (http://www.talkorigins.org/faqs/comdesc/).
But unfortunately the opportunity of showing this con-
silience of trees for the universally conserved proteins
was missed: the UCA model selection framework sug-
gested that several trees were much more likely than a
single tree for all proteins [1], which prima facie goes
against a universal phylogeny, in the absence of a quan-
tification of the amount of disagreement. We are thus
left only with a visual corroboration of the non-random
clustering of taxa ([1] Figure 2a), which do indeed pro-
vide evidence for the common ancestry of the analysed
sequences.

Conclusions
We have shown that the K&W profile model [3] was
a valid simulation of sequences with independent ori-
gins where the UCA test described in [1] indeed fails.
We have also shown that the UCA test does not cor-
rectly infer the independent origins of sequences sim-
ulated under a simpler profile model, even when the
model is among those being tested. We then proceeded
to show that even if we restrict ourselves to sequences
that look similar, the UCA test as proposed in [1] would
still be biased towards UCA. Finally, after discussing the
inappropriateness of comparing likelihoods between dif-
ferent data sets — as has been suggested in [7], for
instance — we devise frequentist permutation tests that
do not seem to have the drawbacks of the original UCA
test.
In summary, we conclude that for many data sets the

original UCA test cannot reject the UCA hypothesis even
in the absence of a common ancestor, where this fail-
ure can only be downplayed by subjectively excluding the
problematic data sets.

Reviewers’ comments
Reviewer’s report 1: Prof Eugene Koonin
Reviewer summary
This is a carefully performed, technically sound re-
examination of the UCA test published by Theobald.
De Oliveira Martins and Posada treat an alignment of
unrelated sequences (the IO case) as a star tree with arbi-
trary branch lengths, and using this approach, validate the
previous conclusion of Koonin andWolf that the UCA test
in effect relies on sequence similarity. Given that similarity
is high enough, the test is heavily biased towards the UCA
hypothesis and fails to provide an objective refutation of
the IO hypothesis. I do not see any substantial problems
with the analysis. The paper is quite technical in charac-
ter and as such, can be fully appreciated only by practicing
phylogeneticists. However, given the fundamental impor-
tance of the UCA problem, the conclusions at least will be
of interest to many biologists.

Reviewer recommendations to authors
I see no major problems with the manuscript.

Minor issues
The English usage merits some attention. For example,
the authors systematically use ‘specially’ instead of ‘espe-
cially’, this has to be fixed. The use of apostrophes (didn’t,
shouldn’t) is not advisable. The work of Theobald pub-
lished in 2010 hardly can be considered ‘recent’ let alone
‘very recent’ as claimed in the abstract. There are some
typos as well.
Authors’ response: We changed the text, following the

suggestions, and also fixed all typos.

Reviewer’s report 2: Dr Yuri Wolf

Reviewer summary
The manuscript by de Oliveira Martins and Posada
explore the ability of phylogenetic tests to distinguish
between common ancestry and independent origin of
sequences. The paper touches upon deep issues of phylo-
genetic analysis and is of considerable interest.

Reviewer recommendations to authors
de Oliveira Martins and Posada further explore the con-
troversy with the so called Universal Common Ancestry
(UCA) test, introduced by Theobald in his 2010 paper
[[1] in the current manuscript]. The authors validate the
original criticism by Koonin and Wolf [3], demonstrat-
ing that the original UCA test is unable to discriminate
between the meaningful phylogeny and a star tree with
infinitely long branches (equivalent to an independent ori-
gin). de Oliveira Martins and Posada show that the UCA
test doesn’t perform even when a variety of modifications
that might have taken care of several shortcomings of the
test (overspecification of the profile model, alignment bias

http://www.talkorigins.org/faqs/comdesc/


Martins and Posada Biology Direct  (2016) 11:19 Page 9 of 10

etc). They conclude that any plausible test is heavily biased
towards supporting common ancestry even when the
sequences are explicitly not related phylogenetically. In
my opinion the most interesting part of the current work
is the more general conclusions that all existing methods
of phylogenetic analysis seem to be strongly predicated
on the a priori existence of meaningful phylogeny and are
unable to reject this hypothesis almost by design. This
suggests that development of the analytical framework
that is capable of tackling such questions might require
going outside of the “classical” phylogenetics paradigm.
Authors’ response: We believe that this circularity

is due to neglecting the effects of the alignment, since
each column in a fixed aligment is a statement of
homology. Therefore phylogenetic models that can cir-
cumvent this limitation at least in theory could test
more objectively for the appropriateness of finite branch
lengths.

Reviewer’s report 3: Prof WilliamMartin
Reviewer summary and recommendations to authors
This is a continuation of the discourse precipitated by the
Theobald paper in Nature a few years ago. Martins and
Posada weigh in with some very incisive insights regarding
models to test the predictions of universal common ances-
try as formulated by Theobald. I also reviewed Koonin’s
response to Theobald in these pages a few years back, it
was good, this is even better. I think this paper should be
published, it is a valuable contribution to the debate. It
is an even more valuable contribution to advances in the
realm ofmodels, which are getting very complex anymore.
I would like to see Posada, a leading expert on models,
someday address the issue that the most highly param-
eterized models seem to always get the best likelihoods,
and how that figures in to understanding deep phylogeny,
but that is a different paper for a different day. I am wor-
ried that by adding too many parameters to models we are
getting the best likelihoods, but not at the expense of lis-
tening more to what the models say than to what the data
say. That also comes to the fore in this paper. After all,
with today’s large data sets with many sites per OTU, what
we seem to be getting are fully resolved trees that differ
across models, such that the models are slowly becoming
more important than the data in phylogeny, an interesting
development. At any rate, I like this paper a lot, it can be
published as is (I found one typo: “Inthis”)
Authors’ response: For nested models, adding param-

eters can only result in equal or better likelihods. For
real data we normally see an increase. However, we
have criteria like AIC or BIC to penalize overfitting. In
fact, the more data we have (and this is the trend for
phylogenomics), the likelihood, P(D | M), will become
more and more important compared to the number of
parameters. Rather than the number of parameters, in

our opinion the key, given a large amount of data, is
which parameters do we include. Only by adding mean-
ingful parameters (say variable frequencies across the
alignment) we will be able to listen more from the
data.

Endnotes
1equals one if and only if χ is true and equals zero

otherwise
2Although we must never expect real data sets to

follow the implemented model exactly
3We cannot compare likelihoods between different data
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